Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Immunopharmacol Immunotoxicol ; 45(6): 672-681, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37339357

RESUMEN

BACKGROUND: Mast cells (MCs) are important effector cells in anaphylaxis and anaphylactic disease. 3',4',5,7-tetrahydroxyflavone (THF) presents in many medicinal plants and exerts a variety of pharmacological effects. In this study, we evaluated the effect of THF on C48/80-induced anaphylaxis and the mechanisms underlying its effects, including the role of secreted phosphoprotein 1 (SPP1), which has not been reported to IgE-independent MC activation. RESULTS: THF inhibited C48/80-induced Ca2+ flow and degranulation via the PLCγ/PKC/IP3 pathway in vitro. RNA-seq showed that THF inhibited the expression of SPP1 and downstream molecules. SPP1 is involved in pseudo-anaphylaxis reactions. Silencing SPP1 affects the phosphorylation of AKT and P38. THF suppressed C48/80-induced paw edema, hypothermia and serum histamine, and chemokines release in vivo. CONCLUSIONS: Our results validated SPP1 is involved in IgE-independent MC activation anaphylactoid reactions. THF inhibited C48/80-mediated anaphylactoid reactions both in vivo and in vitro, suppressed calcium mobilization and inhibited SPP1-related pathways.


Asunto(s)
Anafilaxia , Humanos , Anafilaxia/inducido químicamente , Anafilaxia/tratamiento farmacológico , Luteolina/farmacología , Osteopontina/metabolismo , Osteopontina/farmacología , Mastocitos , Inflamación/metabolismo , Degranulación de la Célula , Inmunoglobulina E/metabolismo
2.
Biochem Pharmacol ; 213: 115617, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37211174

RESUMEN

Fusion with host cell membrane is the main mechanism of infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we propose that a new strategy to screen small-molecule antagonists blocking SARS-CoV-2 membrane fusion. Using cell membrane chromatography (CMC), we found that harringtonine (HT) simultaneously targeted SARS-CoV-2 S protein and host cell surface TMPRSS2 expressed by the host cell, and subsequently confirmed that HT can inhibit membrane fusion. HT effectively blocked SARS-CoV-2 original strain entry with the IC50 of 0.217 µM, while the IC50 in delta variant decreased to 0.101 µM, the IC50 in Omicron BA.1 variant was 0.042 µM. Due to high transmissibility and immune escape, Omicron subvariant BA.5 has become the dominant strain of the SARS-CoV-2 virus and led to escalating COVID-19 cases, however, against BA.5, HT showed a surprising effectiveness. The IC50 in Omicron BA.5 was even lower than 0.0019 µM. The above results revealed the effect of HT on Omicron is very significant. In summary, we characterize HT as a small-molecule antagonist by direct targeting on the Spike protein and TMPRSS2.


Asunto(s)
COVID-19 , Harringtoninas , Humanos , SARS-CoV-2
3.
Biofactors ; 49(1): 140-152, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35861676

RESUMEN

Asthma is a heterogeneous disease related to numerous inflammatory cells, among which mast cells play an important role in the early stages of asthma. Therefore, treatment of asthma targeting mast cells is of great research value. α-Asarone is an important anti-inflammatory component of the traditional Chinese medicine Acorus calamus L, which has a variety of medicinal values. To investigate whether α-asarone can alleviate asthma symptoms and its mechanism. In this study, we investigated the effect of α-asarone on mast cell activation in vivo and in vitro. The release of chemokines or cytokines, AHR (airway hyperresponsiveness), and mast cell activation were examined in a mast cell-dependent asthma model. Western blot was performed to determine the underlying pathway. α-Asarone inhibited the degranulation of LAD2 (laboratory allergic disease 2) cells and decreased IL-8, MCP-1, histamine, and TNF-α in vitro. α-Asarone reduced paw swelling and leakage of Evans blue, as well as serum histamine, CCL2, and TNF-α in vivo. In the asthma model, α-asarone showed an inhibitory effect on AHR, inflammation, mast cells activation, infiltration of inflammatory cells, and the release of IL-5 and IL-13 in lung tissue. α-Asarone decreased the levels of phosphorylated JAK2, phosphorylated ERK, and phosphorylated STAT3 induced by C48/80. Our findings suggest that α-asarone alleviates allergic asthma by inhibiting mast cell activation through the ERK/JAK2-STAT3 pathway.


Asunto(s)
Asma , Mastocitos , Humanos , Asma/inducido químicamente , Asma/metabolismo , Citocinas/metabolismo , Histamina/metabolismo , Histamina/farmacología , Janus Quinasa 2/efectos adversos , Janus Quinasa 2/metabolismo , Factor de Transcripción STAT3/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Sistema de Señalización de MAP Quinasas
4.
Clin Exp Allergy ; 52(1): 46-58, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33999474

RESUMEN

BACKGROUND: Allergic asthma is a common inflammatory lung disease and a major health problem worldwide. Mast cells (MCs) play a key role in the early-stage pathophysiology of allergic asthma. Substance P (SP) functions in neurogenic inflammation by activating MCs, and therefore, it may to participate in the occurrence and development of asthma. OBJECTIVE: We examined the relationship between SP and lung inflammation, and also whether SP can directly trigger asthma. METHODS: We measured the number of peripheral blood eosinophils, neutrophils and basophils and evaluated the levels of IgE and SP in blood samples of 86 individuals with allergic asthma. Serum IgE and SP levels were also determined in 29 healthy individuals. C57BL/6 mice were subjected to different doses of SP, and bronchoalveolar lavage fluid (BALF) was collected to count the inflammatory cells. Lung tissues were analysed using histopathological methods to evaluate lung peribronchial inflammation, fibrosis and glycogen deposition. Levels of IgE, interleukin (IL)-1, IL-2, IL-4, IL-5, IL-13, IL-17 and IFN-γ were determined in mouse serum. RESULTS: Substance P levels were increased in the serum samples of patients with asthma. SP induced mouse lung peribronchial inflammation, fibrosis and glycogen deposition, with high levels of Th2-related cytokines such as IL-4, IL-5 and IL-13 observed in the BALF. Furthermore, low level of total IgE was noted in the serum, and SP had little effect on MC-deficient kitW-sh/W-sh mice. CONCLUSIONS & CLINICAL RELEVANCE: Substance P levels increased significantly in serum of asthmatic patients and independently associated with the risk of asthma. Furthermore, SP induced Th2 lung inflammation in mice, which was dependent on MCs.


Asunto(s)
Neumonía , Sustancia P , Animales , Líquido del Lavado Bronquioalveolar , Citocinas , Modelos Animales de Enfermedad , Humanos , Pulmón , Mastocitos , Ratones , Ratones Endogámicos C57BL , Neumonía/patología
5.
J Biochem Mol Toxicol ; 36(2): e22948, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34755435

RESUMEN

The outbreak of coronavirus disease 2019 (COVID-19) has induced a large number of deaths worldwide. Angiotensin-converting enzyme 2 (ACE2) is the entry receptor for the 2019 novel coronavirus (2019-nCoV) to infect the host cells. Therefore, ACE2 may be an important target for the prevention and treatment of COVID-19. The aim of this study was to investigate the inhibition effect of valaciclovir hydrochloride (VACV), zidovudine (ZDV), saquinavir (SQV), and efavirenz (EFV) on 2019-nCoV infection. The results of molecule docking and surface plasmon resonance showed that VACV, ZDV, SQV, and EFV could bind to ACE2 protein, with the KD value of (4.33 ± 0.09) e-8 , (6.29 ± 1.12) e-6 , (2.37 ± 0.59) e-5 , and (4.85 ± 1.57) e-5 M, respectively. But only ZDV and EFV prevent the 2019-nCoV spike pseudotyped virus to enter ACE2-HEK293T cells with an EC50 value of 4.30 ± 1.46 and 3.92 ± 1.36 µM, respectively. ZDV and EFV also have a synergistic effect on preventing entry of virus into cells. In conclusion, ZDV and EFV suppress 2019-nCoV infection of ACE2-HEK293T cells by interacting with ACE2.


Asunto(s)
Antivirales/farmacología , Peptidil-Dipeptidasa A/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Pseudotipado Viral , Sitio Alostérico , Antivirales/metabolismo , COVID-19/prevención & control , COVID-19/virología , Células HEK293 , Humanos , Simulación del Acoplamiento Molecular , Peptidil-Dipeptidasa A/metabolismo , Unión Proteica , Resonancia por Plasmón de Superficie , Tratamiento Farmacológico de COVID-19
6.
Phytother Res ; 35(11): 6270-6280, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34486187

RESUMEN

Licochalcone A (Lico A) is a natural flavonoid belonging to the class of substituted chalcone that has various biological effects. Mast cells (MCs) are innate immune cells that mediate hypersensitivity and pseudo-allergic reactions. MAS-related GPR family member X2 (MRGPRX2) on MCs has been recognized as the main receptor for pseudo-allergic reactions. In this study, we investigated the anti-pseudo-allergy effect of Lico A and its underlying mechanism. Substance P (SP), as an MC activator, was used to establish an in vitro and in vivo model of pseudo-allergy. The in vivo effect of Lico A was investigated using passive cutaneous anaphylaxis (PCA) and active systemic allergy, along with degranulation, Ca2+ influx in vitro. SP-induced laboratory of allergic disease 2 (LAD2) cell mRNA expression was explored using RNA-seq, and Lico A inhibited LAD2 cell activation by reverse transcription polymerase chain reaction (RT-PCR), western blotting, and immunofluorescence staining. Lico A showed an inhibitory effect on SP-induced MC activation and pseudo-allergy both in vitro and in vivo. The nuclear factor (NF)-κB pathway is involved in MRGPRX2 induced MC activation, which is inhibited by Lico A. In conclusion, Lico A inhibited the pseudo-allergic reaction mediated by MRGPRX2 by blocking NF-κB nuclear migration.


Asunto(s)
Chalconas , Hipersensibilidad , Degranulación de la Célula , Chalconas/farmacología , Humanos , Hipersensibilidad/tratamiento farmacológico , Mastocitos , FN-kappa B , Proteínas del Tejido Nervioso , Receptores Acoplados a Proteínas G/genética , Receptores de Neuropéptido
7.
J Agric Food Chem ; 69(23): 6569-6577, 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34100606

RESUMEN

Chrysin, one of the most pharmacologically active natural flavonoids, has been extracted from various plants. Mast cells are an important part of innate immunity-mediating anaphylaxis. Pseudo-allergic reactions are currently believed to be associated with the MAS-related GPR family member X2 (MrgX2). In this study, the anti-pseudo allergy effect of chrysin and its underlying mechanisms were studied in vitro and in vivo. Chrysin inhibited passive cutaneous anaphylaxis and systemic pseudo-allergy in vivo. LAD2 cell degranulation, calcium ion (Ca2+) influx, and adenosine 5'-triphosphate (ATP) content were significantly suppressed in a dose-dependent manner. Chrysin suppressed pseudo-allergic reactions through the PLC/IP3/Ca2+ and ERK/STAT3 serine 727 pathways downstream of MrgX2. Therefore, mitochondrial ATP, but not glycolysis, is vital for pseudo-allergic reactions mediated by MrgX2. This study provides new insights for the treatment of pseudo-allergy.


Asunto(s)
Anafilaxia , Receptores Acoplados a Proteínas G , Degranulación de la Célula , Flavonoides , Humanos , Mastocitos , Receptores Acoplados a Proteínas G/genética
8.
Phytother Res ; 35(6): 3181-3193, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33893660

RESUMEN

Anaphylactoid reactions are potentially fatal allergic diseases caused by mast cells (MCs), which release histamine and lipid mediators under certain stimuli. Therefore, there is an urgent need to develop new drug candidates to treat anaphylactoid reactions. The MrgX2 receptor mediates anaphylactoid reactions that cause inflammatory diseases. Cortex dictamni is a Chinese herb used for treating allergy-related diseases; however, its active compound is still unknown and its mechanism of action has not yet been reported. The aim of this study was to screen the anti-anaphylactoid compound from C. dictamni extracts. An MrgX2/CMC-HPLC method was established for screening MrgX2-specific compounds retained from the alcohol extract of C. dictamni. A mouse model of hindpaw extravasation was used to evaluate the anti-anaphylactoid effect of this ingredient. Intracellular Ca2+ mobilization was assessed using a calcium imaging assay. Enzyme immunoassays were performed to measure cytokine and chemokine release levels. The molecular signaling pathways were explored by western blotting. As a result, dictamnine was identified as an effective compound using the MrgX2/CMC method, which remarkably suppressed MC intracellular Ca2+ mobilization and the release of de novo degranulated substances, and inhibited PKC-PLCγ-IP3R-associated protein signaling molecules. Hence, dictamnine is a novel therapeutic candidate for anaphylactoid reactions via MrgX2.


Asunto(s)
Anafilaxia/tratamiento farmacológico , Mastocitos/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Quinolinas/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropéptido/metabolismo , Animales , Calcio/metabolismo , Degranulación de la Célula/efectos de los fármacos , Quimiocinas/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Histamina/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal
9.
Int Immunopharmacol ; 93: 107426, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33550032

RESUMEN

Mast cells (MCs) are crucial effectors in inflammation and allergic reactions. The Mas-related G-protein-coupled receptor X2 (MRGPRX2) was the MC-specific receptor and play a key role in IgE-independent allergic reactions. The activation of the Nuclear factor erythroid derived 2-related factor 2 (Nrf2) is involved in IgE-mediated MC degranulation. Resveratrol (Res) is a polyphenolic compound in red wine and has been reported to exert a variety of pharmacological effects. In the current study, we investigated the effect of Res in regulating MRGPRX2-mediated MC activation and its underlyingmechanism. We demonstrated that Res reduced compound 48/80 (C48/80)-induced calcium flux in MCs and inhibited MCs degranulation in vitro. Res also suppressed C48/80-induced hind paw extravasation, active systemic anaphylaxis, and MCs degranulation in mouse models of pseudo-allergy in vivo. Furthermore, PCR and immunohistochemistry assay suggest that Res up-regulates Nrf2 expression and Nrf2 inhibitor attenuates the protective effects of Res. In conclusion, Res exerts an inhibitory effect on MRGPRX2-mediated MCs activation by targeting Nrf2 pathway and may present a promising new therapeutic agent for the treatment of MRGPRX2-dependent anaphylactoid reactions.


Asunto(s)
Anafilaxia/prevención & control , Antialérgicos/uso terapéutico , Hipersensibilidad/inmunología , Mastocitos/inmunología , Factor 2 Relacionado con NF-E2/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Resveratrol/uso terapéutico , Anafilaxia/etiología , Animales , Degranulación de la Célula , Células Cultivadas , Modelos Animales de Enfermedad , Hipersensibilidad/complicaciones , Hipersensibilidad/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal
10.
J Med Virol ; 93(5): 3143-3151, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33580518

RESUMEN

Since December 2019, the new coronavirus (also known as severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2, 2019-nCoV])-induced disease, COVID-19, has spread rapidly worldwide. Studies have reported that the traditional Chinese medicine Salvia miltiorrhiza possesses remarkable antiviral properties; however, the anti-coronaviral activity of its main components, salvianolic acid A (SAA), salvianolic acid B (SAB), and salvianolic acid C (SAC) is still debated. In this study, we used Cell Counting Kit-8 staining and flow cytometry to evaluate the toxicity of SAA, SAB, and SAC on ACE2 (angiotensin-converting enzyme 2) high-expressing HEK293T cells (ACE2h cells). We found that SAA, SAB, and SAC had a minor effect on the viability of ACE2h cells at concentrations below 100 µM. We further evaluated the binding capacity of SAA, SAB, and SAC to ACE2 and the spike protein of 2019-nCoV using molecular docking and surface plasmon resonance. They could bind to the receptor-binding domain (RBD) of the 2019-nCoV with a binding constant (KD ) of (3.82 ± 0.43) e-6 M, (5.15 ± 0.64)e-7 M, and (2.19 ± 0.14)e-6 M; and bind to ACE2 with KD (4.08 ± 0.61)e-7 M, (2.95 ± 0.78)e-7 M, and (7.32 ± 0.42)e-7 M, respectively. As a result, SAA, SAB, and SAC were determined to inhibit the entry of 2019-nCoV Spike pseudovirus with an EC50 of 11.31, 6.22, and 10.14 µM on ACE2h cells, respectively. In conclusion, our study revealed that three Salvianolic acids can inhibit the entry of 2019-nCoV spike pseudovirus into ACE2h cells by binding to the RBD of the 2019-nCoV spike protein and ACE2 protein.


Asunto(s)
Alquenos/farmacología , Enzima Convertidora de Angiotensina 2/metabolismo , Benzofuranos/farmacología , Ácidos Cafeicos/farmacología , Lactatos/farmacología , Polifenoles/farmacología , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/metabolismo , Alquenos/química , Enzima Convertidora de Angiotensina 2/química , Benzofuranos/química , Ácidos Cafeicos/química , Supervivencia Celular , Células HEK293 , Humanos , Lactatos/química , Estructura Molecular , Polifenoles/química , Unión Proteica , Glicoproteína de la Espiga del Coronavirus/química , Internalización del Virus , Tratamiento Farmacológico de COVID-19
11.
Biochem Pharmacol ; 184: 114401, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33387483

RESUMEN

BACKGROUND: Allergic asthma is a common inflammatory lung disease associated with complex pathogenesis. Mast cell (MC) is one of the key drivers of allergic asthma, Mas-related G protein-coupled receptor X2 (MRGPRX2) on the MC could mediate MC activation and trigger a pseudo-allergic reaction. Imperatorin (IMP), the main active compound of Radix Angelicae Dahuricae, has been reported to exert various pharmacological effects. In this study, we focused on the therapeutical mechanism of IMP on MRGPRX2-induced pseudo-allergy and allergic asthma. METHODS: We examined the effect of IMP on MRGPRX2 related mast cell activation in mouse peritoneal MC (MPMC), Human Laboratory of Allergic Disease 2 MCs (LAD2 cells) and Mrgprx2-expressing HEK293 cells. Molecular docking and Surface plasmon resonance (SPR) were taken to reveal the binding character between IMP and MRPGRX2. MRGPRX2 downstream proteins were also detected by western blotting. IgE-independent responses was evaluated by using passive cutaneous anaphylaxis (PCA) and active systemic anaphylaxis (ASA) models. The therapeutic effect of IMP on asthma was evaluated by a lung inflammation mouse model which was induced by ovalbumin (OVA). RESULTS: IMP was found to reduce substance P (SP) induced calcium flux and suppressed degranulation of MC. SP can promote the phosphorylation of ERK and CamKII, which regulates the synthesis of inflammatory factors such as MIP-2 and TNF-α in MC. In vivo assays revealed that IMP can mitigate SP-induced mouse PCA and ASA. IMP could also mitigate lung inflammation in an OVA induced mice model by inhibiting MC activation in the lung tissue. Furthermore, IMP binds well to MRGPRX2 protein. The binding constant (KD) is 4.48 ± 0.49 × 10-7 M. The data suggeste that IMP is a novel inhibitor of MRGPRX2 to treat allergic asthma.


Asunto(s)
Furocumarinas/farmacología , Hipersensibilidad/tratamiento farmacológico , Mastocitos/efectos de los fármacos , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Línea Celular , Furocumarinas/metabolismo , Histamina/metabolismo , Humanos , Hipersensibilidad/metabolismo , Hipersensibilidad/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Mastocitos/metabolismo , Mastocitos/patología , Ratones Endogámicos C57BL , Anafilaxis Cutánea Pasiva/efectos de los fármacos , Neumonía/tratamiento farmacológico , Neumonía/etiología , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo
12.
Virology ; 554: 83-88, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33387788

RESUMEN

The SARS-CoV-2 outbreak, began in late 2019, has caused a worldwide pandemic and shows no signs of slowing. Glucocorticoids (GCs), including dexamethasone (DEX), have been widely used as effective anti-inflammatory and immunosuppressant drugs. In this study, seven GCs had no obvious effect on cell viability of angiotensin converting enzyme 2 (ACE2) high expressed HEK293T cells when concentrations were under 10 µM. Molecular docking results revealed that DEX occupied with active binding site of ACE2 of SARS-CoV-2 spike protein. Surface plasmon resonance (SPR) results showed that KD value between DEX and ACE2 was (9.03 ± 0.78) e-6 M. Cell membrane chromatography (CMC) results uncovered that DEX had a chromatographic retention. DEX was found out to inhibiting the viropexis into ACE2h cells using SARS-CoV-2 spike pseudotyped virus. Therefore, DEX inhibits the entrance of SARS-CoV-2 spike pseudotyped virus into cell by binding to ACE2.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Dexametasona/farmacología , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus/efectos de los fármacos , Enzima Convertidora de Angiotensina 2/química , Sitios de Unión , Dexametasona/metabolismo , Células HEK293 , Humanos , Simulación del Acoplamiento Molecular , Unión Proteica , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/química
13.
Phytomedicine ; 80: 153391, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33113502

RESUMEN

BACKGROUND: Pseudo-allergic reactions are potentially fatal hypersensitivity responses caused by mast cell activation. α-linolenic acid (ALA) is known for its anti-allergic properties. However, its potential anti-pseudo-allergic effects were not much investigated. PURPOSE: To investigate the inhibitory effects of ALA on IgE-independent allergy in vitro, and in vivo, as well as the mechanism underlying its effects. METHODS/STUDY DESIGNS: The anti-anaphylactoid activity of ALA was evaluated in passive cutaneous anaphylaxis reaction (PCA) and systemic anaphylaxis models. Calcium imaging was used to assess intracellular Ca2+ mobilization. The release of cytokines and chemokines was measured using enzyme immunoassay kits. Western blot analysis was conducted to investigate the molecules of Lyn-PLCγ-IP3R-Ca2+ and Lyn-p38/NF-κB signaling pathway. RESULTS: ALA (0, 1.0, 2.0, and 4.0 mg/kg) dose-dependently reduced serum histamine, chemokine release, vasodilation, eosinophil infiltration, and the percentage of degranulated mast cells in C57BL/6 mice. In addition, ALA (0, 50, 100, and 200 µM) reduced Compound 48/80 (C48/80) (30 µg/ml)-or Substance P (SP) (4 µg/ml)-induced calcium influx, mast cell degranulation and cytokines and chemokine release in Laboratory of Allergic Disease 2 (LAD2) cells via Lyn-PLCγ-IP3R-Ca2+ and Lyn-p38/NF-κB signaling pathway. Moreover, ALA (0, 50, 100, and 200 µM) inhibited C48/80 (30 µg/ml)- and SP (4 µg/ml)-induced calcium influx in Mas-related G-protein coupled receptor member X2 (MrgX2)-HEK293 cells and in vitro kinase assays confirmed that ALA inhibited the activity of Lyn kinase. In response to 200 µM of ALA, the activity of Lyn kinase by (7.296 ± 0.03751) × 10-5 units/µl and decreased compared with C48/80 (30 µg/ml) by (8.572 ± 0.1365) ×10-5 units/µl. CONCLUSION: Our results demonstrate that ALA might be a potential Lyn kinase inhibitor, which could be used to treat pseudo-allergic reaction-related diseases such as urticaria.


Asunto(s)
Anafilaxia/tratamiento farmacológico , Antialérgicos/farmacología , Anafilaxis Cutánea Pasiva/efectos de los fármacos , Ácido alfa-Linolénico/farmacología , Familia-src Quinasas/antagonistas & inhibidores , Animales , Degranulación de la Célula/efectos de los fármacos , Quimiocinas/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Inmunoglobulina E/inmunología , Masculino , Mastocitos/efectos de los fármacos , Mastocitos/inmunología , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropéptido/metabolismo , p-Metoxi-N-metilfenetilamina/toxicidad , Familia-src Quinasas/química , Familia-src Quinasas/inmunología , Familia-src Quinasas/metabolismo
14.
Phytomedicine ; 79: 153333, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32920291

RESUMEN

BACKGROUND: The novel coronavirus disease (2019-nCoV) has been affecting global health since the end of 2019 and there is no sign that the epidemic is abating . The major issue for controlling the infectious is lacking efficient prevention and therapeutic approaches. Chloroquine (CQ) and Hydroxychloroquine (HCQ) have been reported to treat the disease, but the underlying mechanism remains controversial. PURPOSE: The objective of this study is to investigate whether CQ and HCQ could be ACE2 blockers and used to inhibit 2019-nCoV virus infection. METHODS: In our study, we used CCK-8 staining, flow cytometry and immunofluorescent staining to evaluate the toxicity and autophagy of CQ and HCQ, respectively, on ACE2 high-expressing HEK293T cells (ACE2h cells). We further analyzed the binding character of CQ and HCQ to ACE2 by molecular docking and surface plasmon resonance (SPR) assays, 2019-nCoV spike pseudotyped virus was also used to observe the viropexis effect of CQ and HCQ in ACE2h cells. RESULTS: Results showed that HCQ is slightly more toxic to ACE2h cells than CQ. Both CQ and HCQ could bind to ACE2 with KD = (7.31 ± 0.62)e-7 M and (4.82 ± 0.87)e-7 M, respectively. They exhibit equivalent suppression effect for the entrance of 2019-nCoV spike pseudotyped virus into ACE2h cells. CONCLUSIONS: CQ and HCQ both inhibit the entrance 2019-nCoV into cells by blocking the binding of the virus with ACE2. Our findings provide novel insights into the molecular mechanism of CQ and HCQ treatment effect on virus infection.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Betacoronavirus/efectos de los fármacos , Cloroquina/farmacología , Hidroxicloroquina/farmacología , Peptidil-Dipeptidasa A/efectos de los fármacos , Enzima Convertidora de Angiotensina 2 , Autofagia/efectos de los fármacos , Betacoronavirus/fisiología , COVID-19 , Infecciones por Coronavirus/tratamiento farmacológico , Células HEK293 , Humanos , Simulación del Acoplamiento Molecular , Pandemias , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral , SARS-CoV-2 , Tratamiento Farmacológico de COVID-19
15.
Eur J Pharmacol ; 886: 173415, 2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-32771669

RESUMEN

Paeoniflorin (PF), a monoterpene glycoside isolated from the aqueous extract of the Chinese herb Radix Paeoniae Alba, has been used for treating various inflammatory diseases. In this study, we aimed to investigate the anti-allergic activities of PF. The anti-anaphylactic activity of PF was investigated using mast cell (MC) degranulation assay as well as Ca2+ influx in vitro and skin swelling and extravasation assays in vivo. The results showed that PF inhibited MC degranulation (histamine release from 74.5 ± 4.95 ng/ml to 58.7 ± 6.06 ng/ml) and Ca2+ influx challenged by DNP-BSA in vitro. In addition, PF reduced the degree of swelling and Evans blue exudation in mice paws. Furthermore, PF dose-dependently reduced serum inflammatory mediator release in mice sensitized with ovalbumin for 48 h by inhibiting MC degranulation. Molecular docking study revealed that PF bound better with the α subunit of FcϵRI than with the ß subunit. SPR revealed that PF had a strong affinity interaction with FcϵRI α subunit and the KD value was (7.08 ± 0.97) e-6 M. Our findings revealed that PF inhibited anaphylactic responses in vivo and in vitro, and it can be considered a novel FcϵRI inhibitor for preventing MC-related allergic diseases.


Asunto(s)
Degranulación de la Célula/efectos de los fármacos , Glucósidos/farmacología , Hipersensibilidad/tratamiento farmacológico , Inmunoglobulina E/efectos de los fármacos , Mastocitos/efectos de los fármacos , Monoterpenos/farmacología , Receptores de IgE/efectos de los fármacos , Animales , Calcio/metabolismo , Quimiocinas/metabolismo , Relación Dosis-Respuesta a Droga , Glucósidos/uso terapéutico , Liberación de Histamina/efectos de los fármacos , Hipersensibilidad/prevención & control , Masculino , Ratones , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Monoterpenos/uso terapéutico , Ovalbúmina/inmunología , Anafilaxis Cutánea Pasiva/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Piel/patología
16.
J Pharm Pharmacol ; 72(9): 1221-1231, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32557699

RESUMEN

OBJECTIVES: To investigate the inhibitory effects of Kaempferol, a natural flavonol active compound, on pseudo-allergic reactions (in vivo and in vitro), particularly on the mechanism underlying its effect in human mast cells. METHODS: Compound 48/80 (C48/80)-induced immunoglobulin E (IgE)-independent passive cutaneous anaphylaxis (PCA) model and systemic anaphylaxis were applied to investigate the anti-allergic activity of Kaempferol. The degranulation assay, calcium imaging and the secretion of cytokines and chemokines were used to evaluate the inhibitory effect on mast cell activation. Western blot analysis was performed to investigate intracellular calcium fluctuation-related signalling pathways. KEY FINDINGS: Kaempferol dose-dependently attenuated C48/80-induced mice hind paw swelling, dye extravasation and skin mast cell degranulation, and rehabilitated the hypothermia, as well as reduced the serum concentrations of histamine, tryptase, tumour necrosis factor-alpha (TNF-α), interleukin-8 (IL-8) and monocyte chemo-attractant protein-1 (MCP-1). Furthermore, Kaempferol suppressed C48/80-triggered human MC degranulation and calcium fluctuations by inhibiting phospholipase Cγ (PLCγ) phosphorylation and subsequent cytokines synthesis pathways. CONCLUSIONS: The inhibition of the process of PLCγ phosphorylation to Ca2+ mobilization represents a major strategy in Kaempferol-suppressed pseudo-allergic reactions. Thus, Kaempferol could be considered as a therapeutic drug candidate for non-IgE-mediated allergic reactions or inflammations.


Asunto(s)
Anafilaxia/tratamiento farmacológico , Antialérgicos/farmacología , Calcio/metabolismo , Quempferoles/farmacología , Anafilaxia/inmunología , Animales , Antialérgicos/administración & dosificación , Células Cultivadas , Quimiocinas/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Humanos , Inmunoglobulina E/inmunología , Quempferoles/administración & dosificación , Masculino , Mastocitos , Ratones , Ratones Endogámicos C57BL , Anafilaxis Cutánea Pasiva/efectos de los fármacos , Anafilaxis Cutánea Pasiva/inmunología , Secretagogos/inmunología , p-Metoxi-N-metilfenetilamina/inmunología
17.
Phytomedicine ; 68: 153149, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32032836

RESUMEN

BACKGROUND: Mast cells (MCs) are crucial effectors in allergic disorders by secreting inflammatory mediators. The Mas-related G-protein-coupled receptor X2 (Mrgprx2) was shown to have a key role in IgE-independent allergic reactions. Therefore, potential drug candidates that directly target Mrgprx2 could be used to treat pseudo-allergic diseases. Shikonin, an active ingredient derived from Lithospermum erythrorhizon Sieb. et Zucc has been used for its anti-inflammatory properties since ancient China. PURPOSE: To investigate the inhibitory effects of Shikonin on IgE-independent allergy both in vitro and in vivo, as well as the mechanism underlying its effects. METHODS/STUDY DESIGNS: The anti-anaphylactoid activity of Shikonin was evaluated in PCA and systemic anaphylaxis models, Calcium imaging was used to assess intracellular Ca2+ mobilization. The release of cytokines and chemokines was measured using enzyme immunoassay kits. Western blot analysis was conducted to investigate the molecules of PLCγ-PKC-IP3 signaling pathway. The analytical method of surface plasmon resonance was employed to study the interaction between Shikonin and potential target protein Mrgprx2. RESULTS: Shikonin can suppress compound 48/80 (C48/80)-induced PCA, active systemic anaphylaxis, and MCs degranulation in mice in a dose-dependent manner. In addition, Shikonin reduced C48/80-induced calcium flux and suppressed LAD2 cell degranulation via PLCγ-PKC-IP3 signaling pathway. Moreover, Shikonin was found to inhibit C48/80-induced Mrgprx2 expression in HEK cells, displaying specific interactions with the Mrgprx2 protein. CONCLUSION: Shikonin could be a potential antagonist of Mrgprx2, thereby inhibiting pseudo-allergic reactions through Ca2+ mobilization.


Asunto(s)
Anafilaxia/tratamiento farmacológico , Hipersensibilidad/tratamiento farmacológico , Naftoquinonas/farmacología , Proteínas del Tejido Nervioso/inmunología , Receptores Acoplados a Proteínas G/inmunología , Receptores de Neuropéptido/inmunología , Anafilaxia/inducido químicamente , Animales , Calcio/metabolismo , Degranulación de la Célula/efectos de los fármacos , Línea Celular , Quimiocinas/metabolismo , Citocinas/metabolismo , Humanos , Hipersensibilidad/inmunología , Masculino , Mastocitos/efectos de los fármacos , Mastocitos/metabolismo , Ratones Endogámicos C57BL , Naftoquinonas/química , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Fosfolipasa C gamma/metabolismo , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropéptido/antagonistas & inhibidores , Receptores de Neuropéptido/química , Receptores de Neuropéptido/metabolismo , Secretagogos/toxicidad , p-Metoxi-N-metilfenetilamina/toxicidad
18.
Phytother Res ; 34(6): 1409-1420, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31989711

RESUMEN

Mast cells play an important role in inflammatory and allergic diseases. MAS-related G protein-coupled receptor X2 (MRGPRX2) is a novel G protein-coupled receptor in mast cells that mediates drug-induced anaphylactoid reactions. Piperine has been reported to have anti-inflammatory and anti-allergic pharmacological activities. However, whether the pharmacological effects are regulated by MRGPRX2 has not yet been reported. The purpose of this study was to assess the anti-anaphylactoid effect of Piperine and to explore its potential mechanism. The anti-anaphylactoid effect of Piperine was assessed by an in vivo mouse hindpaw extravasation model. Mast cell intracellular calcium mobilization was measured by a calcium imaging assay. An enzyme immunoassay was used to evaluate the release of pro-inflammatory factors from stimulated mast cells. Activated mast cell related signals were assessed by western blot. A cell membrane chromatography assay was used to determine the binding characteristics of Piperine and MRGPRX2. The results showed that Piperine suppressed mast cell intracellular Ca2+ mobilization, inhibited cytokines and chemokines release, and down-regulated the phosphorylation level of phospholipase Cγ1, protein kinase C, inositol 1,4,5-triphate receptor, P38, protein kinase B, and ERK. Meanwhile, Piperine can bind to MRGPRX2 as a specific antagonist. Hence, Piperine can be served as a novel therapeutic drug candidate for MRGPRX2-mediated anaphylactoid reactions.


Asunto(s)
Alcaloides/química , Anafilaxia/tratamiento farmacológico , Benzodioxoles/química , Mastocitos/metabolismo , Piperidinas/química , Alcamidas Poliinsaturadas/química , Receptores Acoplados a Proteínas G/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones
19.
Int Immunopharmacol ; 75: 105800, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31401386

RESUMEN

Iopamidol is a radiographic contrast media which caused a very high incidence of anaphylactic reactions. Mast cells are sentinel cells in host defense reactions during immediate hypersensitivity responses and anaphylactic responses. Mas-related G protein-coupled receptor X2 (MRGPRX2) is a kind of mast cell specific receptor, which triggers mast cell degranulation in anaphylactic reactions. Mice MrgprB2 is a homologous gene of MRGPRX2. We sought to better understand the anaphylactic reactions induced by Iopamidol and the mechanisms involving MRGPRX2. The MRGPRX2-related anaphylactic reactions induced by Iopamidol were investigated using the hindpaw swelling and extravasation assay in vivo and a calcium imaging assay was used for mast cell intracellular calcium responses detection and mast cell release of anaphylactic mediators, such as ß-hexosaminidase, histamine and TNF-α, was also detected in vitro. The mast cell deficient KitW-sh/W-sh mice and MrgprB2 knockout mice exhibited a reduced Iopamidol-induced inflammation effect compared with wild type mice. Furthermore, human mast cells that express MRGPRX2 were activated by Iopamidol in a dose-dependent manner, meanwhile MRGPRX2 knockdown mast cells showed reduced intracellular calcium responses and anaphylactic mediators release effect. It could be concluded that Iopamidol-induced anaphylactoid reactions were MRGPRX2 mediated to provoke mast cells Ca2+ mobilization and degranulation.


Asunto(s)
Hipersensibilidad a las Drogas/inmunología , Yopamidol , Mastocitos/inmunología , Anafilaxis Cutánea Pasiva/inmunología , Receptores Acoplados a Proteínas G/inmunología , Animales , Calcio/inmunología , Línea Celular , Humanos , Inmunoglobulina E , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Acoplados a Proteínas G/genética , Factor de Necrosis Tumoral alfa/inmunología
20.
Phytother Res ; 33(8): 2034-2043, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31197891

RESUMEN

Mast cells play an essential role in IgE-FcεR1-mediated allergic diseases. Citrus aurantium is a prolific source of flavonoids with various biological activities, including anti-inflammatory, antioxidant, and anti-tumor efficacies. Neohesperidin is a novel flavonoid isolated from the leaves of C. aurantium. In this study, the anti-allergic and anti-inflammatory potentials of neohesperidin were investigated along with its molecular mechanism. The anti-anaphylactic activity of neohesperidin was evaluated through hind paw extravasation study in mice. Calcium imaging was used to assess intracellular Ca2+ mobilization. The levels of cytokines and chemokines were measured using enzyme immunoassay kits. Western blotting was used to explore the related molecular signaling pathways. Neohesperidin suppressed IgE-induced mast cell activations, including degranulation and secretion of cytokines and eicosanoids through inhibiting phosphorylation of Lyn kinase. Neohesperidin inhibited the release of histamine and other proinflammatory cytokines through a mast cell-dependent passive cutaneous anaphylaxis animal model. Histological studies demonstrated that neohesperidin substantially inhibited IgE-induced cellular infiltration and attenuated mast cell activation in skin tissue. In conclusion, our study revealed that neohesperidin could inhibit allergic responses in vivo and in vitro, and the molecule may be regarded as a novel agent for preventing mast cell-immediate and delayed allergic diseases.


Asunto(s)
Anafilaxia/tratamiento farmacológico , Hesperidina/análogos & derivados , Inmunoglobulina E/metabolismo , Mastocitos/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Hesperidina/uso terapéutico , Masculino , Mastocitos/metabolismo , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...