Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mater Today Bio ; 20: 100653, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37214554

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a severe interstitial lung disease with poor prognosis and high mortality rate. In the process of IPF, inflammatory dysregulation of macrophages and massive fibroblast aggregation and proliferation destroy alveoli, which cause pulmonary dysfunction, and ultimately lead to death due to respiratory failure. In the treatment of IPF, crossing biological barriers and delivering drugs to lung interstitium are the major challenges. In order to avoid the side effect of macrophages proliferation, we proposed, designed, and evaluated the strategy which combined macrophage depletion by intervaginal space injection and intravenous targeted therapy on bleomycin mouse model. We found that it inhibited pulmonary macrophages, reduced macrophage depletion in non-target organs, improved pulmonary drug targeting, impeded the progression of pulmonary fibrosis, and accelerated the recovery of pulmonary function. This combination therapeutic strategy shows good biosafety and efficacy, induces a targeted response, and is promising as a practical new clinical approach towards the treatment of pulmonary fibrosis.

2.
Photodiagnosis Photodyn Ther ; 42: 103558, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37030434

RESUMEN

OBJECTIVE: Photodynamic therapy (PDT) may be an effective therapeutic strategy for colorectal cancer at an early stage. However, malignant cells' resistance to photodynamic agents can lead to treatment failure. MYBL2 (B-Myb) is an oncogene in colorectal carcinogenesis and development, for which little research has focused on its effect on drug resistance. MATERIALS AND METHODS: In the present work, a colorectal cancer cell line with a stable knockdown of MYBL2 (ShB-Myb) was constructed first. Chlorin e6 (Ce6) was utilized to induced PDT. The anti-cancer efficacy was measured by CCK-8, PI staining, and Western blots. The drug uptake of Ce6 was assayed by flow cytometry and confocal microscopy. The ROS generation was detected by the CellROX probe. DDSB and DNA damage were assayed through comet experiment and Western blots. The over-expression of MYBL2 was conducted by MYBL2 plasmid. RESULTS: The findings indicated that the viability of ShB-Myb treated with Ce6-PDT was not decreased compared to control SW480 cells (ShNC), which were resistant to PDT. Further investigation revealed reduced photosensitizer enrichment and mitigated oxidative DNA damage in colorectal cancer cells with depressed MYBL2. It turned out that SW480 cells knocking down MYBL2 showed phosphorylation of NF-κB and led to up-regulation of ABCG2 expression thereupon. When MYBL2 was replenished back in MYBL2-deficient colorectal cancer cells, phosphorylation of NF-κB was blocked and ABCG2 expression up-regulation was suppressed. Additionally, replenishment of MYBL2 also increased the enrichment of Ce6 and the efficacy of PDT. CONCLUSION: In summary, MYBL2 absence in colorectal cancer contributes to drug resistance by activating NF-κB to up-regulate ABCG2 and thereby leading to photosensitizer Ce6 efflux. This study provides a novel theoretical basis and strategy for how to effectively improve the anti-tumor efficacy of PDT.


Asunto(s)
Clorofilidas , Neoplasias Colorrectales , Fotoquimioterapia , Porfirinas , Humanos , Fármacos Fotosensibilizantes/farmacología , Fotoquimioterapia/métodos , Regulación hacia Arriba , FN-kappa B/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Porfirinas/farmacología , Línea Celular Tumoral , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Proteínas de Neoplasias , Transactivadores/metabolismo , Proteínas de Ciclo Celular/metabolismo
3.
Front Pharmacol ; 13: 854526, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35662735

RESUMEN

Aloe-emodin (1,8-dihydroxy-3-hydroxymethyl-anthraquinone), derived from some Chinese edible medicinal herbs, exerts a potential anticancer activity on various cancer cells, making it a drug candidate for cancer therapy. Yet, the role of aloe-emodin in pyroptosis, a new type of cell death, is uncharacterized. In this study, we explored the molecular mechanisms of aloe-emodin-triggered pyroptosis. Aloe-emodin inhibited proliferation and migration and triggered caspase-dependent cell death of HeLa cells in a dose-dependent manner. Aloe-emodin caused mitochondrial dysfunction and induced pyroptosis by activating the caspase-9/3/GSDME axis. Transcriptional analysis showed extensive changes in gene expressions in cellular pathways, including MAPK, p53, and PI3K-Akt pathways when treated with aloe-emodin. This study not only identified a novel role of aloe-emodin in pyroptotic cell death, but also performed a systematical genome-wide analysis of cellular pathways responding to aloe-emodin, providing a theoretical basis for applying anthraquinone derivatives in the treatment of GSDME-expressing cancers.

5.
Nano Today ; 38: 101139, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33758593

RESUMEN

Effective vaccines are vital to fight against the COVID-19 global pandemic. As a critical component of a subunit vaccine, the adjuvant is responsible for strengthening the antigen-induced immune responses. Here, we present a new nanovaccine that comprising the Receptor-Binding Domain (RBD) of spike protein and the manganese nanoadjuvant (MnARK), which induces humoral and cellular responses. Notably, even at a 5-fold lower antigen dose and with fewer injections, the MnARK vaccine immunized mice showed stronger neutralizing abilities against the infection of the pseudovirus (~270-fold) and live coronavirus (>8-fold) in vitro than that of Alum-adsorbed RBD vaccine (Alu-RBD). Furthermore, we found that the effective co-delivery of RBD antigen and MnARK to lymph nodes (LNs) elicited an increased cellular internalization and the activation of immune cells, including DCs, CD4+ and CD8+ T lymphocytes. Our findings highlight the importance of MnARK adjuvant in the design of novel coronavirus vaccines and provide a rationale strategy to design protective vaccines through promoting cellular internalization and the activation of immune-related pathways.

7.
Adv Mater ; 33(2): e2006189, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33270281

RESUMEN

Interleukin 12 (IL12) is a potent pro-inflammatory chemokine with multifunction, including promoting cytotoxic T-cell-mediated killing of cancer cells. IL12-based cancer gene therapy can overcome IL12's life-threatening adverse effects, but its clinical translation has been limited by the lack of systemic gene-delivery vectors capable of efficiently transfecting tumors to produce sufficient local IL12. Macrophages inherently excrete IL12, and tumor-associated macrophages (TAMs) are the major tumor component taking up a large fraction of the vectors arriving in the tumor. It is thus hypothesized that a gene vector efficiently transfecting both cancer cells and TAMs would make the tumor to produce sufficient IL12; however, gene transfection of TAMs is challenging due to their inherent strong degradation ability. Herein, an IL12 gene-delivery vector is designed that efficiently transfects both cancer cells and TAMs to make them as a factory for IL12 production, which efficiently activates anticancer immune responses and remodels the tumor microenvironment, for instance, increasing the M1/M2 ratio by more than fourfold. Therefore, the intravenously administered vector retards tumor growth and doubles survival in three animal models' with negligible systemic toxicities. This work reports the first nonviral IL12 gene delivery system that effectively makes use of both macrophages and tumor cells.


Asunto(s)
Terapia Genética/métodos , Interleucina-12/genética , Transfección , Macrófagos Asociados a Tumores/metabolismo , Línea Celular Tumoral , Humanos , Microambiente Tumoral/genética
8.
ACS Nano ; 14(11): 15700-15713, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33155807

RESUMEN

As a conceptually attractive strategy, the use of immune checkpoint blockade antibodies to treat cancer is limited due to the restrained tumor-infiltrating lymphocytes (TILs), poor accumulation and penetration of antibodies, and deficient checkpoint blockade in malignancies. In this study, we describe a pH and mild photothermal sequentially triggered PD-L1 siRNA release nanosystem, based on monoelemental bismuthene, as a one-for-all strategy to realize enhanced tumor mild photothermal immunotherapy. Under manually controlled NIR irradiation, the bismuthene-based nanosystem simultaneously induces a tumor-enhanced pathological permeability and retention (EPPR) effect, increases TIL recruitment, and triggers programmed siRNA release, thereby amplifying anti-PD-L1 immunotherapy. In addition, the nanosystem's rapid removal through intestinal and renal clearance mitigates toxicity risk associated with long-term retention. In vivo antitumor experiments demonstrate that this bismuthene-based nanosystem is a promising and effective approach for "cold" tumor management.


Asunto(s)
Inmunoterapia , Neoplasias , Humanos , Linfocitos Infiltrantes de Tumor , Neoplasias/terapia
9.
J Hazard Mater ; 262: 836-44, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24140535

RESUMEN

A magnetic nanoscaled catalyst cobalt ferrite (CoFe2O4) was successfully prepared and used for the activation of oxone to generate sulfate radicals for the degradation of diclofenac. The catalyst was characterized by transmission electron microscopy, X-ray diffractometry, Fourier transform infrared spectroscopy and vibrating sample magnetometer. The effects of calcination temperature, initial pH, catalyst and oxone dosage on the degradation efficiency were investigated. Results demonstrated that CoFe2O4-300 exhibited the best catalytic performance and almost complete removal of diclofenac was obtained in 15 min. The degradation efficiency increased with initial pH decreasing in the pH range of 5-9. The increase of catalyst and oxone dosage both had the positive effect on the degradation of diclofenac. Moreover, CoFe2O4 could retain high degradation efficiency even after being reused for five cycles. Finally, the major diclofenac degradation intermediates were identified and the primary degradation pathways were proposed.


Asunto(s)
Cobalto/química , Diclofenaco/análisis , Hierro/química , Magnetismo , Nanopartículas del Metal/química , Oxígeno/química , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Calcinosis , Catálisis , Cromatografía Liquida , Concentración de Iones de Hidrógeno , Espectrometría de Masas , Microscopía Electrónica de Transmisión , Nanotecnología , Espectroscopía Infrarroja por Transformada de Fourier , Sulfatos/química , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...