Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Microbiol ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858594

RESUMEN

Human parainfluenza virus type 3 (hPIV3) is a respiratory pathogen that can cause severe disease in older people and infants. Currently, vaccines against hPIV3 are in clinical trials but none have been approved yet. The haemagglutinin-neuraminidase (HN) and fusion (F) surface glycoproteins of hPIV3 are major antigenic determinants. Here we describe naturally occurring potently neutralizing human antibodies directed against both surface glycoproteins of hPIV3. We isolated seven neutralizing HN-reactive antibodies and a pre-fusion conformation F-reactive antibody from human memory B cells. One HN-binding monoclonal antibody (mAb), designated PIV3-23, exhibited functional attributes including haemagglutination and neuraminidase inhibition. We also delineated the structural basis of neutralization for two HN and one F mAbs. MAbs that neutralized hPIV3 in vitro protected against infection and disease in vivo in a cotton rat model of hPIV3 infection, suggesting correlates of protection for hPIV3 and the potential clinical utility of these mAbs.

2.
Nat Commun ; 7: 13557, 2016 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-27929061

RESUMEN

Herpesvirus entry into host cells is mediated by multiple virally encoded receptor binding and membrane fusion glycoproteins. Despite their importance in host cell tropism and associated disease pathology, the underlying and essential interactions between these viral glycoproteins remain poorly understood. For Epstein-Barr virus (EBV), gHgL/gp42 complexes bind HLA class II to activate membrane fusion with B cells, but gp42 inhibits fusion and entry into epithelial cells. To clarify the mechanism by which gp42 controls the cell specificity of EBV infection, here we determined the structure of gHgL/gp42 complex bound to an anti-gHgL antibody (E1D1). The critical regulator of EBV tropism is the gp42 N-terminal domain, which tethers the HLA-binding domain to gHgL by wrapping around the exterior of three gH domains. Both the gp42 N-terminal domain and E1D1 selectively inhibit epithelial-cell fusion; however, they engage distinct surfaces of gHgL. These observations clarify key determinants of EBV host cell tropism.


Asunto(s)
Herpesvirus Humano 4/fisiología , Proteínas del Envoltorio Viral/fisiología , Tropismo Viral , Animales , Células CHO , Cricetulus , Células Epiteliales/virología , Herpesvirus Humano 4/química , Mutación , Conformación Proteica , Proteínas del Envoltorio Viral/química
3.
PLoS Pathog ; 10(8): e1004309, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25144748

RESUMEN

Epstein-Barr Virus (EBV) is an enveloped double-stranded DNA virus of the gammaherpesvirinae sub-family that predominantly infects humans through epithelial cells and B cells. Three EBV glycoproteins, gH, gL and gp42, form a complex that targets EBV infection of B cells. Human leukocyte antigen (HLA) class II molecules expressed on B cells serve as the receptor for gp42, triggering membrane fusion and virus entry. The mechanistic role of gHgL in herpesvirus entry has been largely unresolved, but it is thought to regulate the activation of the virally-encoded gB protein, which acts as the primary fusogen. Here we study the assembly and function of the reconstituted B cell entry complex comprised of gHgL, gp42 and HLA class II. The structure from negative-stain electron microscopy provides a detailed snapshot of an intermediate state in EBV entry and highlights the potential for the triggering complex to bring the two membrane bilayers into proximity. Furthermore, gHgL interacts with a previously identified, functionally important hydrophobic pocket on gp42, defining the overall architecture of the complex and playing a critical role in membrane fusion activation. We propose a macroscopic model of the initiating events in EBV B cell fusion centered on the formation of the triggering complex in the context of both viral and host membranes. This model suggests how the triggering complex may bridge the two membrane bilayers, orienting critical regions of the N- and C- terminal ends of gHgL to promote the activation of gB and efficient membrane fusion.


Asunto(s)
Linfocitos B/virología , Infecciones por Virus de Epstein-Barr/metabolismo , Herpesvirus Humano 4/patogenicidad , Interacciones Huésped-Parásitos/fisiología , Internalización del Virus , Animales , Células CHO , Cricetinae , Cricetulus , Antígenos HLA-DQ/metabolismo , Procesamiento de Imagen Asistido por Computador , Glicoproteínas de Membrana/metabolismo , Microscopía Electrónica , Chaperonas Moleculares/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Proteínas Virales/metabolismo
4.
J Mol Biol ; 402(2): 412-27, 2010 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-20673833

RESUMEN

DEAD-box RNA helicases of the bacterial DbpA subfamily are localized to their biological substrate when a carboxy-terminal RNA recognition motif domain binds tightly and specifically to a segment of 23S ribosomal RNA (rRNA) that includes hairpin 92 of the peptidyl transferase center. A complex between a fragment of 23S rRNA and the RNA binding domain (RBD) of the Bacillus subtilis DbpA protein YxiN was crystallized and its structure was determined to 2.9 A resolution, revealing an RNA recognition mode that differs from those observed with other RNA recognition motifs. The RBD is bound between two RNA strands at a three-way junction. Multiple phosphates of the RNA backbone interact with an electropositive band generated by lysines of the RBD. Nucleotides of the single-stranded loop of hairpin 92 interact with the RBD, including the guanosine base of G2553, which forms three hydrogen bonds with the peptide backbone. A G2553U mutation reduces the RNA binding affinity by 2 orders of magnitude, confirming that G2553 is a sequence specificity determinant in RNA binding. Binding of the RBD to 23S rRNA in the late stages of ribosome subunit maturation would position the ATP-binding duplex destabilization fragment of the protein for interaction with rRNA in the peptidyl transferase cleft of the subunit, allowing it to "melt out" unstable secondary structures and allow proper folding.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/metabolismo , ARN Bacteriano/química , ARN Bacteriano/metabolismo , ARN Ribosómico 23S/química , ARN Ribosómico 23S/metabolismo , Cristalografía por Rayos X , Lisina/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , Fosfatos/metabolismo , Mutación Puntual , Unión Proteica , Estructura Terciaria de Proteína , Electricidad Estática
5.
J Mol Biol ; 373(2): 367-81, 2007 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-17825319

RESUMEN

The periplasmic molecular chaperone protein SurA facilitates correct folding and maturation of outer membrane proteins in Gram-negative bacteria. It preferentially binds peptides that have a high fraction of aromatic amino acids. Phage display selections, isothermal titration calorimetry and crystallographic structure determination have been used to elucidate the basis of the binding specificity. The peptide recognition is imparted by the first peptidyl-prolyl isomerase (PPIase) domain of SurA. Crystal structures of complexes between peptides of sequence WEYIPNV and NFTLKFWDIFRK with the first PPIase domain of the Escherichia coli SurA protein at 1.3 A resolution, and of a complex between the dodecapeptide and a SurA fragment lacking the second PPIase domain at 3.4 A resolution, have been solved. SurA binds as a monomer to the heptapeptide in an extended conformation. It binds as a dimer to the dodecapeptide in an alpha-helical conformation, predicated on a substantial structural rearrangement of the SurA protein. In both cases, side-chains of aromatic residues of the peptides contribute a large fraction of the binding interactions. SurA therefore asserts a recognition preference for aromatic amino acids in a variety of sequence configurations by adopting alternative tertiary and quaternary structures to bind peptides in different conformations.


Asunto(s)
Proteínas Portadoras/química , Proteínas de Escherichia coli/química , Chaperonas Moleculares/química , Péptidos/química , Isomerasa de Peptidilprolil/química , Secuencia de Aminoácidos , Sitios de Unión , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cristalografía por Rayos X , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Péptidos/metabolismo , Isomerasa de Peptidilprolil/genética , Isomerasa de Peptidilprolil/metabolismo , Periplasma/metabolismo , Conformación Proteica , Pliegue de Proteína , Relación Estructura-Actividad , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...