Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39340419

RESUMEN

The lithium lanthanum titanium oxide (LLTO) perovskite is one type of superior lithium (Li)-ion conductor that is of great interest as a solid-state electrolyte for all-solid-state lithium batteries. Structural defects and impurity phases formed during the synthesis of LLTO largely affect its Li-ion conductivity, yet the underlying Li+ diffusion mechanism at the atomic scale is still under scrutiny. Herein, we use aberration-corrected transmission electron microscopy to perform a thorough structural characterization of the LLTO ceramic pellet. We reveal a prevalent transient phase transition of (La, Ti)2O3 existing at the antiphase boundaries between single-crystalline LLTO domains. This transient phase exhibits a specific crystal orientation with the LLTO phase and shows a gradual structural transition to a tetragonal LLTO structure, which enables detailed crystallographic analysis to correlate their formation to the sintering process of LLTO powders into ceramic pellets. We also find that Li diffusion is retarded by this phase and correlated with the excess amount of La, which is corroborated by the theoretical evaluation of the atomistic mechanisms of Li diffusion across this phase.

2.
J Phys Chem A ; 128(32): 6668-6676, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39106203

RESUMEN

When the particle size of energetic materials is reduced to the nanoscale, significant changes occur in their properties and behavior. In this work, compression processes of three RDX nanoparticles (A, B, and C) were simulated using ReaxFF-lg. The mechanical, structural, and energetic responses of RDX nanoparticles during compression were revealed and characterized. Simulations reveal that the compression process of the nanoparticles can be divided into three stages: elastic stage, primary damage stage, and sustained damage stage. The temperature increase rate in the elastic phase is much lower than in the primary damage phase. In addition, we found that the smaller nanoparticle B presents a smaller elastic modulus and compressive strength, and it has a slower rate of temperature increase during the primary damage phase. Compared to cuboidal nanoparticles (A and B), the spherical nanoparticle C tends to absorb less energy during the elastic stage and exhibits slower damage rate during the primary damage stage. This is a key factor contributing to the low sensitivity of spherical nanoparticles.

3.
Biosens Bioelectron ; 262: 116542, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38991372

RESUMEN

Continuous glucose monitors are crucial for diabetes management, but invasive sampling, signal drift and frequent calibrations restrict their widespread usage. Microneedle sensors are emerging as a minimally-invasive platform for real-time monitoring of clinical parameters in interstitial fluid. Herein, a painless and flexible microneedle sensing patch is constructed by a mechanically-strong microneedle base and a thin layer of fluorescent hydrogel sensor for on-site, accurate, and continuous glucose monitoring. The Förster resonance energy transfer (FRET)-based hydrogel sensors are fabricated by facile photopolymerizations of acryloylated FRET pairs and glucose-specific phenylboronic acid. The optimized hydrogel sensor enables quantification of glucose with reversibility, high selectivity, and signal stability against photobleaching. Poly (ethylene glycol diacrylate)-co-polyacrylamide hydrogel is utilized as the microneedle base, facilitating effective skin piercing and biofluid extraction. The integrated microneedle sensor patch displays a sensitivity of 0.029 mM-1 in the (patho)physiological range, a low detection limit of 0.193 mM, and a response time of 7.7 min in human serum. Hypoglycemia, euglycemia and hyperglycemia are continuously monitored over 6 h simulated meal and rest activities in a porcine skin model. This microneedle sensor with high transdermal analytical performance offers a powerful tool for continuous diabetes monitoring at point-of-care settings.


Asunto(s)
Técnicas Biosensibles , Automonitorización de la Glucosa Sanguínea , Glucemia , Transferencia Resonante de Energía de Fluorescencia , Hidrogeles , Agujas , Dispositivos Electrónicos Vestibles , Humanos , Técnicas Biosensibles/instrumentación , Hidrogeles/química , Automonitorización de la Glucosa Sanguínea/instrumentación , Glucemia/análisis , Animales , Porcinos , Polietilenglicoles/química , Límite de Detección , Resinas Acrílicas/química , Diseño de Equipo , Monitoreo Continuo de Glucosa , Ácidos Borónicos
4.
PLoS Negl Trop Dis ; 18(7): e0012299, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38959285

RESUMEN

An improved understanding of the Plasmodium vivax populations in the Great Mekong Subregion (GMS) is needed to monitor the progress of malaria elimination. This study aimed to use a P. vivax single nucleotide polymorphism (SNP) barcode to evaluate the population dynamics and explore the gene flow among P. vivax parasite populations in the western GMS (China, Myanmar and Thailand). A total of 315 P. vivax patient samples collected in 2011 and 2018 from four regions of the western GMS were genotyped for 42 SNPs using the high-throughput MassARRAY SNP genotyping technology. Population genetic analysis was conducted to estimate the genetic diversity, effective population size, and population structure among the P. vivax populations. Overall, 291 samples were successfully genotyped at 39 SNPs. A significant difference was observed in the proportion of polyclonal infections among the five P. vivax populations (P = 0.0012, Pearson Chi-square test, χ2 = 18.1), with western Myanmar having the highest proportion (96.2%, 50/52) in 2018. Likewise, the average complexity of infection was also highest in western Myanmar (1.31) and lowest in northeast Myanmar (1.01) in 2018. The older samples from western China in 2011 had the highest pairwise nucleotide diversity (π, 0.388 ± 0.046), expected heterozygosity (He, 0.363 ± 0.02), and the largest effective population size. In comparison, in the neighboring northeast Myanmar, the more recent samples in 2018 showed the lowest values (π, 0.224 ± 0.036; He, 0.220 ± 0.026). Furthermore, the 2018 northeast Myanmar parasites showed high and moderate genetic differentiation from other populations with FST values of 0.162-0.252, whereas genetic differentiation among other populations was relatively low (FST ≤ 0.059). Principal component analysis, phylogeny, and STRUCTURE analysis showed that the P. vivax population in northeast Myanmar in 2018 substantially diverged from other populations. Although the 42 SNP barcode is a valuable tool for tracking parasite origins of worldwide parasite populations, a more extended barcode with additional SNPs is needed to distinguish the more related parasite populations in the western GMS.


Asunto(s)
Código de Barras del ADN Taxonómico , Malaria Vivax , Plasmodium vivax , Polimorfismo de Nucleótido Simple , Plasmodium vivax/genética , Plasmodium vivax/clasificación , Humanos , Malaria Vivax/parasitología , Malaria Vivax/epidemiología , Mianmar/epidemiología , Tailandia/epidemiología , Genotipo , China/epidemiología , Variación Genética , Flujo Génico
5.
Adv Sci (Weinh) ; 11(30): e2309509, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38884139

RESUMEN

Dermal tattoo biosensors are promising platforms for real-time monitoring of biomarkers, with skin used as a diagnostic interface. Traditional tattoo sensors have utilized small molecules as biosensing elements. However, the rise of synthetic biology has enabled the potential employment of engineered bacteria as living analytical tools. Exploiting engineered bacterial sensors will allow for potentially more sensitive detection across a broad biomarker range, with advanced processing and sense/response functionalities using genetic circuits. Here, the interfacing of bacterial biosensors as living analytics in tattoos is shown. Engineered bacteria are encapsulated into micron-scale hydrogel beads prepared through scalable microfluidics. These biosensors can sense both biochemical cues (model biomarkers) and biophysical cues (temperature changes, using RNA thermometers), with fluorescent readouts. By tattooing beads into skin models and confirming sensor activity post-tattooing, our study establishes a foundation for integrating bacteria as living biosensing entities in tattoos.


Asunto(s)
Técnicas Biosensibles , Tatuaje , Técnicas Biosensibles/métodos , Tatuaje/métodos , Humanos , Piel/microbiología , Piel/metabolismo , Biomarcadores/metabolismo , Biomarcadores/análisis , Bacterias/genética , Bacterias/metabolismo
6.
Biosens Bioelectron ; 256: 116242, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38631133

RESUMEN

Psychiatric disorders are associated with serve disturbances in cognition, emotional control, and/or behavior regulation, yet few routine clinical tools are available for the real-time evaluation and early-stage diagnosis of mental health. Abnormal levels of relevant biomarkers may imply biological, neurological, and developmental dysfunctions of psychiatric patients. Exploring biosensors that can provide rapid, in-situ, and real-time monitoring of psychiatric biomarkers is therefore vital for prevention, diagnosis, treatment, and prognosis of mental disorders. Recently, psychiatric biosensors with high sensitivity, selectivity, and reproducibility have been widely developed, which are mainly based on electrochemical and optical sensing technologies. This review presented psychiatric disorders with high morbidity, disability, and mortality, followed by describing pathophysiology in a biomarker-implying manner. The latest biosensors developed for the detection of representative psychiatric biomarkers (e.g., cortisol, dopamine, and serotonin) were comprehensively summarized and compared in their sensitivities, sensing technologies, applicable biological platforms, and integrative readouts. These well-developed biosensors are promising for facilitating the clinical utility and commercialization of point-of-care diagnostics. It is anticipated that mental healthcare could be gradually improved in multiple perspectives, ranging from innovations in psychiatric biosensors in terms of biometric elements, transducing principles, and flexible readouts, to the construction of 'Big-Data' networks utilized for sharing intractable psychiatric indicators and cases.


Asunto(s)
Biomarcadores , Técnicas Biosensibles , Trastornos Mentales , Humanos , Biomarcadores/análisis , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Dopamina/análisis , Técnicas Electroquímicas/métodos , Trastornos Mentales/diagnóstico , Trastornos Mentales/fisiopatología , Salud Mental , Serotonina/análisis , Serotonina/sangre , Serotonina/metabolismo
7.
Lab Chip ; 24(9): 2454-2467, 2024 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-38644805

RESUMEN

Safe, accurate, and reliable analysis of urinary biomarkers is clinically important for early detection and monitoring of the progression of chronic kidney disease (CKD), as it has become one of the world's most prevalent non-communicable diseases. However, current technologies for measuring urinary biomarkers are either time-consuming and limited to well-equipped hospitals or lack the necessary sensitivity for quantitative analysis and post a health risk to frontline practitioners. Here we report a robust paper-based dual functional biosensor, which is integrated with the clinical urine sampling vial, for the simultaneous and quantitative analysis of pH and glucose in urine. The pH sensor was fabricated by electrochemically depositing IrOx onto a paper substrate using optimised parameters, which enabled an ultrahigh sensitivity of 71.58 mV pH-1. Glucose oxidase (GOx) was used in combination with an electrochemically deposited Prussian blue layer for the detection of glucose, and its performance was enhanced by gold nanoparticles (AuNPs), chitosan, and graphite composites, achieving a sensitivity of 1.5 µA mM-1. This dual function biosensor was validated using clinical urine samples, where a correlation coefficient of 0.96 for pH and 0.98 for glucose detection was achieved with commercial methods as references. More importantly, the urine sampling vial was kept sealed throughout the sample-to-result process, which minimised the health risk to frontline practitioners and simplified the diagnostic procedures. This diagnostic platform, therefore, holds high promise as a rapid, accurate, safe, and user-friendly point-of-care (POC) technology for the analysis of urinary biomarkers in frontline clinical settings.


Asunto(s)
Técnicas Biosensibles , Papel , Sistemas de Atención de Punto , Humanos , Concentración de Iones de Hidrógeno , Oro/química , Glucosa/análisis , Urinálisis/instrumentación , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Técnicas Electroquímicas , Nanopartículas del Metal/química , Grafito/química , Biomarcadores/orina
8.
Bioresour Technol ; 399: 130636, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38548032

RESUMEN

Biofuel production from microalgae has been greatly restricted by low biomass productivity and long-term photosynthetic efficacy. Here, a novel strategy for selecting high-growing, stress-resistant algal strains with high photosynthetic capacity was proposed based on biocompatible extracellular polymeric substances (EPS) probes with aggregation-induced emission (AIE) properties. Specifically, AIE active EPS probes were synthesized for in-situ long-term monitoring of the EPS productivity at different algal growth stages. By coupling the AIE-based fluorescent techniques, algal cells were classified into four diverse populations based on their chlorophyll and EPS signals. Mechanistic studies on the sorted algal cells revealed their remarkable stress resistance and high expression of cell division, biopolymer production and photosynthesis-related genes. The sorted and subcultured algal cells consistently exhibited relatively higher growth rates and photosynthetic capacities, resulting in an increased (1.2 to 1.8-fold) algal biomass production, chlorophyll, and lipids. This study can potentially open new strategies to boost microalgal-based biofuel production.


Asunto(s)
Chlamydomonas reinhardtii , Microalgas , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Biocombustibles , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Bioprospección , Clorofila/metabolismo , Microalgas/metabolismo
9.
Ultrason Sonochem ; 104: 106827, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38412678

RESUMEN

It is of great significance to prepare liners with excellent inhibition of energetic plasticizer migration and gas barrier properties. Here, we have successfully prepared magnetic iron oxide decorated reduced-graphene-oxide nanosheets (MRGO) by using ultrasound-assisted method. The obtained MRGO nanosheet-fillers were filled into hydroxyl-terminated polybutadiene (HTPB) which was exposed to a magnetic field (200 mT) to achieve ordered orientation of MRGO in the HTPB matrix (Ordered MRGO/HTPB). The laser confocal microscopy demonstrates that MRGO exhibit ordered orientation structure in HTPB matrix with good dispersion, which renders the HTPB composite liners exhibiting high gas and plasticizer barrier capability, with a reduction of 18.9 % in water vapor permeability and a decrease of 14.1 % in dibutyl phthalate (DBP) migration equilibrium concentration as compared with those of random MRGO embedded HTPB composite liners (Random MRGO/HTPB). Moreover, a theoretical model accounting for such enhanced gas/plasticizer barrier performance of HTPB due to the implantation of order aligned MRGO was established, which shows that the effective diffusion pathways of plasticizer/gas for liner penetration would be significantly enhanced when the MRGO nanosheets are oriented within the HTPB matrix. This work provides an effective and facile strategy toward the design and development of composite liners with high plasticizer/gas barrier performance for industrial applications.

10.
Biosens Bioelectron ; 250: 116045, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38301546

RESUMEN

Skin cancer is a critical global public health concern, with melanoma being the deadliest variant, correlated to 80% of skin cancer-related deaths and a remarkable propensity to metastasize. Despite notable progress in skin cancer prevention and diagnosis, the limitations of existing methods accentuate the demand for precise diagnostic tools. Biosensors have emerged as valuable clinical tools, enabling rapid and reliable point-of-care (POC) testing of skin cancer. This review offers insights into skin cancer development, highlights essential cutaneous melanoma biomarkers, and assesses the current landscape of biosensing technologies for diagnosis. The comprehensive analysis in this review underscores the transformative potential of biosensors in revolutionizing melanoma skin cancer diagnosis, emphasizing their critical role in advancing patient outcomes and healthcare efficiency. The increasing availability of these approaches supports direct diagnosis and aims to reduce the reliance on biopsies, enhancing POC diagnosis. Recent advancements in biosensors for skin cancer diagnosis hold great promise, with their integration into healthcare expected to enhance early detection accuracy and reliability, thereby mitigating socioeconomic disparities.


Asunto(s)
Técnicas Biosensibles , Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/diagnóstico , Neoplasias Cutáneas/diagnóstico , Técnicas Biosensibles/métodos , Reproducibilidad de los Resultados , Piel
11.
Small ; 20(30): e2311975, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38396264

RESUMEN

Transition metal oxides, fluorides, and sulfides are extensively studied as candidate electrode materials for lithium-ion batteries driven by the urgency of developing next-generation higher energy density lithium batteries. These conversion-type electrode materials often require nanosized active materials to enable a "smooth" lithiation and de-lithiation process during charge/discharge cycles, determined by their size, structure, and phase. Herein, the structural and chemical changes of Copper Disulfide (CuS2) hollow nanoparticles during the lithiation process through an in situ transmission electron microscopy (TEM) method are investigated. The study finds the hollow structure of CuS2 facilitates the quick formation of fluidic Li2S "drops," accompanied by a de-sulfurization to the Cu7S4 phase. Meanwhile, the metallic Cu phase emerges as fine nanoparticles and grows into nano-strips, which are embedded in the Li2S/Cu7S4 matrix. These complex nanostructured phases and their spatial distribution can lead to a low de-lithiation barrier, enabling fast reaction kinetics.

12.
Adv Sci (Weinh) ; 11(12): e2306560, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38225744

RESUMEN

Point-of-care (POC) has the capacity to support low-cost, accurate and real-time actionable diagnostic data. Microneedle sensors have received considerable attention as an emerging technique to evolve blood-based diagnostics owing to their direct and painless access to a rich source of biomarkers from interstitial fluid. This review systematically summarizes the recent innovations in microneedle sensors with a particular focus on their utility in POC diagnostics and personalized medicine. The integration of various sensing techniques, mostly electrochemical and optical sensing, has been established in diverse architectures of "lab-on-a-microneedle" platforms. Microneedle sensors with tailored geometries, mechanical flexibility, and biocompatibility are constructed with a variety of materials and fabrication methods. Microneedles categorized into four types: metals, inorganics, polymers, and hydrogels, have been elaborated with state-of-the-art bioengineering strategies for minimally invasive, continuous, and multiplexed sensing. Microneedle sensors have been employed to detect a wide range of biomarkers from electrolytes, metabolites, polysaccharides, nucleic acids, proteins to drugs. Insightful perspectives are outlined from biofluid, microneedles, biosensors, POC devices, and theragnostic instruments, which depict a bright future of the upcoming personalized and intelligent health management.


Asunto(s)
Técnicas Biosensibles , Técnicas Biosensibles/métodos , Pruebas en el Punto de Atención , Proteínas , Agujas , Biomarcadores
13.
Biosens Bioelectron ; 249: 116003, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38227993

RESUMEN

Contact lens sensors have been emerging as point-of-care devices in recent healthcare developments for ocular physiological condition monitoring and diagnosis. Fluorescence sensing technologies have been widely applied in contact lens sensors due to their accuracy, high sensitivity, and specificity. As ascorbic acid (AA) level in tears is closely related to ocular inflammation, a fluorescent contact lens sensor incorporating a BSA-Au nanocluster (NC) probe is developed for in situ tear AA detection. The NCs are firstly synthesized to obtain a fluorescent probe, which exhibits high reusability through the quench/recover (KMnO4/AA) process. The probe is then encapsulated with 15 wt% of poly(vinyl alcohol) (PVA) and 1.5 wt% of citric acid (CA) film, and implemented on a closed microfluidic contact lens sensing region. The laser-ablated microfluidic channel in contact lens sensors allows for tear fluid to flow through the sensing region, enabling an in-situ detection of AA. Meanwhile, a smartphone application accompanied by a customized 3D printed readout box is developed for image caption and algorism to quantitative analysis of AA levels. The contact lens sensor is tested within the readout box and the emission signal is collected through the smartphone camera at room temperature with an achieved LOD of 0.178 mmol L-1 (0.0-1.2 mmol L-1). The operational and storage lifetime is also evaluated to characterize the sensor properties and resulted in 20 h and 10 days, respectively. The reusable AA contact lens sensor is promising to lead to an alternative accessible diagnostic method for ocular inflammation in point-of-care settings.


Asunto(s)
Técnicas Biosensibles , Lentes de Contacto , Humanos , Monitoreo Fisiológico , Teléfono Inteligente , Inflamación/diagnóstico , Lágrimas
14.
Langmuir ; 39(49): 18031-18042, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38039553

RESUMEN

Obviously, the dispersion of nanocatalytic materials has significant influence on their catalytic performance. In this study, an evaluation method for the dispersion of nanomaterials was established according to the different solid UV absorptions of different substances by taking the dispersion of nanocopper oxide (nano-CuO) in superfine ammonium perchlorate (AP) as an example. The nano-CuO/superfine AP composites with different nano-CuO dispersions can be obtained by changing the process parameters, such as varying the grinding method, the grinding strength, and the grinding time. Three replicate experiments were carried out for different composites to derive the average values of absorbance at 212 nm, and the dispersion of nano-CuO in superfine AP was calculated using the difference equation, as the solid UV curves at 210-214 nm were almost identical for each sample, especially at 212 nm. The properties of different samples were tested by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (IR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), differential scanning calorimetry (DSC), and thermogravimetry-mass spectrometry (TG-MS). The results show that the particle size and structure of superfine AP in the composites prepared by different methods were not changed. The XRD and IR techniques in this study were unable to characterize the dispersion of nano-CuO in the composites due to its low content. The dispersion of nano-CuO in the nano-CuO/superfine AP composites was significantly enhanced with the increase of grinding strength and grinding time, and the dispersion of nano-CuO was positively correlated with its catalytic performance, which means that the thermal decomposition performance of different composites improved with the increasing dispersion of nano-CuO. Highly dispersed nano-CuO exhibited a significant catalytic effect on superfine AP in TG-MS. The above conclusions demonstrate the accuracy of the difference equation for evaluating the dispersion of nanomaterials based on solid UV curves, which is expected to be used extensively in evaluating the dispersion of nanocatalytic materials in energetic materials.

15.
Dalton Trans ; 52(36): 12796-12807, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37622218

RESUMEN

Recently, the widespread use of nanocatalytic materials has contributed to an enormous improvement in the performance of energetic materials, especially, highly dispersed nanomaterials. However, the lack of quantitative methods for analyzing the dispersion of nanomaterials limits their further widespread use. Although various techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), etc. are used to analyze the relative dispersion of nanomaterials, it is not possible to quantitatively analyze their dispersion. Therefore, there has been an effort to develop new methods for the quantitative analysis of nanocatalytic materials. Fortunately, we were able to analyze the dispersion of nanocatalytic materials using the difference in their UV absorbance. More importantly, we established the corresponding difference equation to quantify the dispersion of nanocatalytic materials, which is capable of quantifying the dispersion of nano-Fe2O3 in nano-Fe2O3-ultrafine AP composites. The accuracy of the difference equation was verified using a variety of techniques and the desired results were obtained. Based on the above conclusions, the quantitative analysis method for the dispersion of nanomaterials that we established is expected to be widely used and promote the development of energetic materials.

16.
Dermatologie (Heidelb) ; 74(10): 819-821, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37450053
17.
ACS Omega ; 8(18): 16251-16262, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37179598

RESUMEN

To eliminate internal defects of grains developed during melt-cast charging, the formation mechanism and the trend of crystal morphology of internal defects of 2,4,6-trinitrotoluene and 2,4-dinitroanisole-based melt-cast explosives under different process conditions were simulated. The effects of solidification treatment on melt-cast explosive molding quality were investigated by combining pressurized feeding, head insulation, and water bath cooling. The single pressurized treatment technology results showed that grains were exposed to layer-by-layer solidification from outside to inside, resulting in V-shaped shrink areas of the contract cavity in the core. The defect area was proportional to the treatment temperature. However, the combination of treatment technologies, such as head insulation and water bath cooling, promoted longitudinal gradient solidification of the explosive and controllable migration of its internal defects. Moreover, the combined treatment technologies effectively improved the heat transfer efficiency of the explosive with the help of a water bath to reduce the solidification time, thus achieving highly efficient equal-material manufacturing of microdefect or zero-defect grains.

18.
Polymers (Basel) ; 15(7)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37050345

RESUMEN

The excessive migration of small molecular plasticizers in solid propellants may lead to debonding and changes in combustion characteristics, affecting the safety of solid rocket motors. Herein, two functionalized graphene oxides (GO) were used to enhance the anti-migration performance of EPDM insulation. GO, 3-Aminopropyltriethoxysilane-modified GO (AGO) and octadecylamine-modified GO (HGO) were filled into EPDM to fabricate EPDM insulation. The anti-migration properties and migration kinetics of EPDM insulations were studied using immersion tests. Moreover, the mechanical properties, including the tensile properties, crosslink density, hardness, and aging resistance of different EPDM insulations, were also explored. Compared with GO, AGO, and HGO obviously enhanced the anti-migration and mechanical properties of the EPDM insulations. This study shows that the anti-migration performance of EPDM insulation can be enhanced by functionalized GO.

19.
Chemistry ; 29(25): e202202716, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-36806292

RESUMEN

Plasmonic photocatalysis for CO2 reduction is attracting increasing attention due to appealing properties and great potential for real applications. In this review, the fundamentals of plasmonic photocatalysis and the most recent developments regarding its application in driving CO2 reduction are reported. Firstly, we present the review on the mechanism of plasmonic photocatalytic CO2 reduction, the energy transfer of plasmon, and the CO2 reduction process on the catalyst surface. Then, the modulation on the plasmonic nanostructures and also the semiconductor counterpart to regulate CO2 photoreduction is discussed. Next, the influence of the core-shell structure and the interface between the plasmonic metal and semiconductor on the CO2 photoreduction performance is also outlined. In addition, the latest progress on the emerging direction regarding the plasmonic photocatalysis for methane dry reforming with CO2 is especially emphasized. Finally, a summary on the challenges and prospects of this promising field are provided.

20.
Molecules ; 28(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36615616

RESUMEN

Energetic composite materials (ECMs) are the basic materials of polymer binder explosives and composite solid propellants, which are mainly composed of explosive crystals and binders. During the manufacturing, storage and use of ECMs, the bonding surface is prone to micro/fine cracks or defects caused by external stimuli such as temperature, humidity and impact, affecting the safety and service of ECMs. Therefore, substantial efforts have been devoted to designing suitable self-healing binders aimed at repairing cracks/defects. This review describes the research progress on self-healing binders for ECMs. The structural designs of these strategies to manipulate macro-molecular and/or supramolecular polymers are discussed in detail, and then the implementation of these strategies on ECMs is discussed. However, the reasonable configuration of robust microstructures and effective dynamic exchange are still challenges. Therefore, the prospects for the development of self-healing binders for ECMs are proposed. These critical insights are emphasized to guide the research on developing novel self-healing binders for ECMs in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA