Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Arch Virol ; 169(10): 213, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39365477

RESUMEN

Pigeon paramyxovirus type 1 (PPMV-1) poses significant economic challenges to the pigeon industry in China. However, information about the prevalence, genetic diversity, and epidemiology of PPMV-1 in China is still lacking. In this study, we isolated six strains of PPMV-1 from Hubei and Zhejiang provinces in 2022. All six isolates were found to belong to subgenotype VI.2.1.1.2.2. Five of them were identified as mesogenic and one as lentogenic. Multiple mutations were observed in the F and HN proteins of these isolates. Comprehensive analysis of global PPMV-1 strains highlighted the dominance of genotype VI, showing that VI.2.1.1.2.2 has been the dominant subgenotype since 2011. We also identified 36 host-specific amino acid substitutions that are unique to PPMV-1 in comparison to chicken-origin NDVs. The data reported here contribute to our understanding of the epidemiology, genetic diversity, and prevalence of PPMV-1 and serve as a valuable reference for the prevention and control of PPMV-1.


Asunto(s)
Columbidae , Variación Genética , Virus de la Enfermedad de Newcastle , Filogenia , China/epidemiología , Animales , Columbidae/virología , Virus de la Enfermedad de Newcastle/genética , Virus de la Enfermedad de Newcastle/clasificación , Virus de la Enfermedad de Newcastle/aislamiento & purificación , Enfermedad de Newcastle/virología , Enfermedad de Newcastle/epidemiología , Genotipo , Proteína HN/genética , Mutación
2.
Nat Commun ; 15(1): 4777, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839748

RESUMEN

Drawing inspiration from cohesive integration of skeletal muscles and sensory skins in vertebrate animals, we present a design strategy of soft robots, primarily consisting of an electronic skin (e-skin) and an artificial muscle. These robots integrate multifunctional sensing and on-demand actuation into a biocompatible platform using an in-situ solution-based method. They feature biomimetic designs that enable adaptive motions and stress-free contact with tissues, supported by a battery-free wireless module for untethered operation. Demonstrations range from a robotic cuff for detecting blood pressure, to a robotic gripper for tracking bladder volume, an ingestible robot for pH sensing and on-site drug delivery, and a robotic patch for quantifying cardiac function and delivering electrotherapy, highlighting the application versatilities and potentials of the bio-inspired soft robots. Our designs establish a universal strategy with a broad range of sensing and responsive materials, to form integrated soft robots for medical technology and beyond.


Asunto(s)
Robótica , Robótica/instrumentación , Robótica/métodos , Animales , Biomimética/métodos , Biomimética/instrumentación , Humanos , Prótesis e Implantes , Piel , Diseño de Equipo , Músculo Esquelético/fisiología , Dispositivos Electrónicos Vestibles
3.
Res Sq ; 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38196588

RESUMEN

Living organisms with motor and sensor units integrated seamlessly demonstrate effective adaptation to dynamically changing environments. Drawing inspiration from cohesive integration of skeletal muscles and sensory skins in these organisms, we present a design strategy of soft robots, primarily consisting of an electronic skin (e-skin) and an artificial muscle, that naturally couples multifunctional sensing and on-demand actuation in a biocompatible platform. We introduce an in situ solution-based method to create an e-skin layer with diverse sensing materials (e.g., silver nanowires, reduced graphene oxide, MXene, and conductive polymers) incorporated within a polymer matrix (e.g., polyimide), imitating complex skin receptors to perceive various stimuli. Biomimicry designs (e.g., starfish and chiral seedpods) of the robots enable various motions (e.g., bending, expanding, and twisting) on demand and realize good fixation and stress-free contact with tissues. Furthermore, integration of a battery-free wireless module into these robots enables operation and communication without tethering, thus enhancing the safety and biocompatibility as minimally invasive implants. Demonstrations range from a robotic cuff encircling a blood vessel for detecting blood pressure, to a robotic gripper holding onto a bladder for tracking bladder volume, an ingestible robot residing inside stomach for pH sensing and on-site drug delivery, and a robotic patch wrapping onto a beating heart for quantifying cardiac contractility, temperature and applying cardiac pacing, highlighting the application versatilities and potentials of the nature-inspired soft robots. Our designs establish a universal strategy with a broad range of sensing and responsive materials, to form integrated soft robots for medical technology and beyond.

4.
Sci Adv ; 7(30)2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34301600

RESUMEN

Artificial muscles based on stimuli-responsive polymers usually exhibit mechanical compliance, versatility, and high power-to-weight ratio, showing great promise to potentially replace conventional rigid motors for next-generation soft robots, wearable electronics, and biomedical devices. In particular, thermomechanical liquid crystal elastomers (LCEs) constitute artificial muscle-like actuators that can be remotely triggered for large stroke, fast response, and highly repeatable actuations. Here, we introduce a digital light processing (DLP)-based additive manufacturing approach that automatically shear aligns mesogenic oligomers, layer-by-layer, to achieve high orientational order in the photocrosslinked structures; this ordering yields high specific work capacity (63 J kg-1) and energy density (0.18 MJ m-3). We demonstrate actuators composed of these DLP printed LCEs' applications in soft robotics, such as reversible grasping, untethered crawling, and weightlifting. Furthermore, we present an LCE self-sensing system that exploits thermally induced optical transition as an intrinsic option toward feedback control.

5.
Anal Chim Acta ; 1089: 165-173, 2019 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-31627813

RESUMEN

NiFe2O4 was synthesized using sol-gel method for sensing electrode material of YSZ based ammonia sensor. NiFe2O4-SEs sintered at 1100 °C, 1150 °C and 1200 °C were characterized by XRD, the BET method and ESEM. By testing the NH3 response of different sensors at 650 °C, it was observed that the 1150 °C sintered sensor had the largest response value (-104.3 mV for 320 ppm NH3) and the highest sensitivity (-77.56 mV/decade), which were related to the most TPB sites and the moderate gas phase catalytic reaction. The response values of the sensor varied almost linearly with the logarithm of 20-320 ppm NH3 at 600-750 °C, which was consistent with mixed-potential mechanism testified by polarization and EIS tests. When the oxygen concentration was at 7-10 vol %, its effect on the response value was within 3%. When the water vapor concentration was 3, 6 and 9 vol %, the ammonia response value was 95.1%, 92.9% and 88.7% of the values when there was no water vapor, respectively. The sensor showed very weak cross sensitivities to NOx, but non-negligible SO2 cross sensitivity. It also displayed slight signal drifts in weekly tests in eight weeks, which showed that the sensor attached with NiFe2O4-SE has a good long-term stability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA