Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.021
Filtrar
1.
Se Pu ; 42(7): 669-680, 2024 Jul.
Artículo en Chino | MEDLINE | ID: mdl-38966975

RESUMEN

Mass spectrometry imaging (MSI) is a promising method for characterizing the spatial distribution of compounds. Given the diversified development of acquisition methods and continuous improvements in the sensitivity of this technology, both the total amount of generated data and complexity of analysis have exponentially increased, rendering increasing challenges of data postprocessing, such as large amounts of noise, background signal interferences, as well as image registration deviations caused by sample position changes and scan deviations, and etc. Deep learning (DL) is a powerful tool widely used in data analysis and image reconstruction. This tool enables the automatic feature extraction of data by building and training a neural network model, and achieves comprehensive and in-depth analysis of target data through transfer learning, which has great potential for MSI data analysis. This paper reviews the current research status, application progress and challenges of DL in MSI data analysis, focusing on four core stages: data preprocessing, image reconstruction, cluster analysis, and multimodal fusion. The application of a combination of DL and mass spectrometry imaging in the study of tumor diagnosis and subtype classification is also illustrated. This review also discusses trends of development in the future, aiming to promote a better combination of artificial intelligence and mass spectrometry technology.


Asunto(s)
Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador , Espectrometría de Masas , Espectrometría de Masas/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Humanos , Análisis de Datos
2.
Adv Sci (Weinh) ; : e2404272, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953411

RESUMEN

The phenomenon of flexoelectricity, wherein mechanical deformation induces alterations in the electron configuration of metal oxides, has emerged as a promising avenue for regulating electron transport. Leveraging this mechanism, stress sensing can be optimized through precise modulation of electron transport. In this study, the electron transport in 2D ultra-smooth In2O3 crystals is modulated via flexoelectricity. By subjecting cubic In2O3 (c-In2O3) crystals to significant strain gradients using an atomic force microscope (AFM) tip, the crystal symmetry is broken, resulting in the separation of positive and negative charge centers. Upon applying nano-scale stress up to 100 nN, the output voltage and power values reach their maximum, e.g. 2.2 mV and 0.2 pW, respectively. The flexoelectric coefficient and flexocoupling coefficient of c-In2O3 are determined as ≈0.49 nC m-1 and 0.4 V, respectively. More importantly, the sensitivity of the nano-stress sensor upon c-In2O3 flexoelectric effect reaches 20 nN, which is four to six orders smaller than that fabricated with other low dimensional materials based on the piezoresistive, capacitive, and piezoelectric effect. Such a deformation-induced polarization modulates the band structure of c-In2O3, significantly reducing the Schottky barrier height (SBH), thereby regulating its electron transport. This finding highlights the potential of flexoelectricity in enabling high-performance nano-stress sensing through precise control of electron transport.

3.
Phys Rev E ; 109(6-2): 065212, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39020935

RESUMEN

The analytical expression for the conditions of the solid-fluid phase transition, i.e., the melting curve, for two-dimensional (2D) Yukawa systems is derived theoretically from the isomorph theory. To demonstrate that the isomorph theory is applicable to 2D Yukawa systems, molecular dynamical simulations are performed under various conditions. Based on the isomorph theory, the analytical isomorphic curves of 2D Yukawa systems are derived using the local effective power-law exponent of the Yukawa potential. From the obtained analytical isomorphic curves, the melting curve of 2D Yukawa systems is directly determined using only two known melting points. The determined melting curve of 2D Yukawa systems well agrees with the previous obtained melting results using completely different approaches.

4.
Free Radic Biol Med ; 222: 456-466, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38950659

RESUMEN

Hepatocellular carcinoma (HCC), the primary form of liver cancer, is the third leading cause of cancer-related death globally. Hernandonine is a natural alkaloid derived from Hernandia nymphaeifolia that has been shown to exert various biological functions. In a previous study, hernandonine was shown to suppress the proliferation of several solid tumor cell lines without affecting normal human cell lines. However, little is known about the effect of hernandonine on HCC. Therefore, this study aimed to investigate the effect and mechanism of hernandonine on HCC in relation to autophagy. We found that hernandonine inhibited HCC cell growth in vitro and in vivo. In addition, hernandonine elicited autophagic cell death and DNA damage in HCC cells. RNA-seq analysis revealed that hernandonine upregulated p53 and Hippo signaling pathway-related genes in HCC cells. Small RNA interference of p53 resulted in hernandonine-induced autophagic cell death attenuation. However, inhibition of YAP sensitized HCC cells to hernandonine by increasing the autophagy induction. This is the first study to illustrate the complex involvement of p53 and YAP in the hernandonine-induced autophagic cell death in human HCC cells. Our findings provide novel evidence for the potential of hernandonine as a therapeutic agent for HCC treatment.

5.
Food Funct ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39040017

RESUMEN

Background: Previous studies on the association between diet quality and ovarian cancer (OC) survival are limited and inconsistent. We evaluated the relationship between pre- and post-diagnosis diet quality based on the Healthy Eating Index-2020 (HEI-2020), as well as their changes and OC survival. Methods: This prospective cohort study involved 1082 patients with OC aged 18-79 years, enrolled between 2015 and 2022. Detailed dietary intake before and after diagnosis was recorded using a validated food frequency questionnaire. Deaths were ascertained until February 16th, 2023 via medical records and active follow-up. Cox proportional hazards regression models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CI). Results: We included 549 OC cases with a median follow-up of 44.9 months, representing 206 total deaths. Higher HEI scores were associated with better OS (pre-diagnosis: HRT3 vs. T1 0.66, 95%CI: 0.46-0.93, HR1-SD 0.84, 95%CI: 0.73-0.96; post-diagnosis: HRT3 vs. T1 0.68, 95%CI: 0.49-0.96, HR1-SD 0.80, 95%CI: 0.69-0.92). Compared to the stable group, the group with decreased HEI scores (>3%) from pre- to post-diagnosis had worse OS (HR 1.93, 95%CI: 1.26-2.97). Conclusion: High pre- and post-diagnosis diet quality was associated with improved OC survival, whereas deterioration in diet quality after diagnosis was associated with decreased OC survival.

6.
Diabetes Metab J ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39043444

RESUMEN

Background: Disorders of the blood-brain barrier (BBB) arising from diabetes mellitus are closely related to diabetic encephalopathy. Previous research has suggested that neuron-glia antigen 2 (NG2)-glia plays a key role in maintaining the integrity of the BBB. However, the mechanism by which NG2-glia regulates the diabetic BBB remains unclear. Methods: Type 2 diabetes mellitus (T2DM) db/db mice and db/m mice were used. Evans-Blue BBB permeability tests and transmission electron microscopy techniques were applied. Tight junction proteins were assessed by immunofluorescence and transmission electron microscopy. NG2-glia number and signaling pathways were evaluated by immunofluorescence. Detection of matrix metalloproteinase-9 (MMP-9) in serum was performed using enzyme-linked immunosorbent assay (ELISA). Results: In T2DM db/db mice, BBB permeability in the hippocampus significantly increased from 16 weeks of age, and the structure of tight junction proteins changed. The number of NG2-glia in the hippocampus of db/db mice increased around microvessels from 12 weeks of age. Concurrently, the expression of MMP-9 increased in the hippocampus with no change in serum. Sixteen- week-old db/db mice showed activation of the Wnt/ß-catenin signaling in hippocampal NG2-glia. Treatment with XAV-939 improved structural and functional changes in the hippocampal BBB and reduced MMP-9 secretion by hippocampal NG2-glia in db/db mice. It was also found that the upregulation of ß-catenin protein in NG2-glia in the hippocampus of 16-week-old db/db mice was significantly alleviated by treatment with XAV-939. Conclusion: The results indicate that NG2-glia can lead to structural and functional disruption of the diabetic BBB by activating Wnt/ß-catenin signaling, upregulating MMP-9, and degrading tight junction proteins.

7.
Liver Int ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39037193

RESUMEN

BACKGROUND AND AIMS: Distinctive gut microbial profiles have been observed between patients with Wilson disease (WD) and healthy individuals. Despite this, the exact relationship and influence of gut microbiota on the advancement of WD-related liver damage remain ambiguous. This research seeks to clarify the gut microbiota characteristics in both human patients and mouse models of WD, as well as their impact on liver injury. METHODS: Gut microbial features in healthy individuals, patients with WD, healthy mice and mice with early- and late-stage WD were analysed using 16S rRNA gene sequencing. Additionally, WD-afflicted mice underwent treatment with either an antibiotic cocktail (with normal saline as a control) or healthy microbiota (using disease microbiota as a control). The study assessed gut microbiota composition, hepatic transcriptome profiles, liver copper concentrations and hepatic pathological injuries. RESULTS: Patients with hepatic WD and mice with WD-related liver injury displayed altered gut microbiota composition, notably with a significant reduction in Lactobacillus abundance. Additionally, the abundances of several gut genera, including Lactobacillus, Veillonella and Eubacterium coprostanoligenes, showed significant correlations with the severity of liver injury in patients with WD. In WD mice, antibiotic treatment or transplantation of healthy microbiota altered the gut microbial structure, increased Lactobacillus abundance and modified the hepatic transcriptional profile. These interventions resulted in reduced hepatic copper concentration and alleviation of WD-related liver injury. CONCLUSIONS: Individuals and mice with pronounced WD-related liver injury exhibited shifts in gut microbial composition. Regulating gut microbiota through healthy microbiota transplantation emerges as a promising therapeutic approach for treating WD-related liver injury.

8.
Sci Adv ; 10(29): eado9413, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39018393

RESUMEN

Chemical ligation of peptides is increasingly used to generate proteins not readily accessible by recombinant approaches. However, a robust method to ligate "difficult" peptides remains to be developed. Here, we report an enhanced native chemical ligation strategy mediated by peptide conjugation in trifluoroacetic acid (TFA). The conjugation between a carboxyl-terminal peptide thiosalicylaldehyde thioester and a 1,3-dithiol-containing peptide in TFA proceeds rapidly to form a thioacetal-linked intermediate, which is readily converted into the desired native amide bond product through simple postligation treatment. The effectiveness and practicality of the method was demonstrated by the successful synthesis of several challenging proteins, including the SARS-CoV-2 transmembrane Envelope (E) protein and nanobodies. Because of the ability of TFA to dissolve virtually all peptides and prevent the formation of unreactive peptide structures, the method is expected to open new opportunities for synthesizing all families of proteins, particularly those with aggregable or colloidal peptide segments.


Asunto(s)
Péptidos , Ácido Trifluoroacético , Ácido Trifluoroacético/química , Péptidos/química , SARS-CoV-2/química , Anticuerpos de Dominio Único/química , Humanos , COVID-19/virología
9.
Environ Monit Assess ; 196(8): 750, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39028430

RESUMEN

Pollution from mineral exploitation is an important risk factor affecting surface water environment in mineral regions. It is urgent to construct a simple and accurate model to assess the surface water pollution risk from mineral exploitation in the regional scale. Thus, taking a mining province namely Liaoning in northeastern China as the study area, we proposed a framework to simulate the transport process of pollutants from mineral exploitation points to the surrounding surface water based on the "source-sink" theory. In our framework, we adopted the regional growth method (RGM) to extract the potential polluted water area as the certain "sink" considering the influence of the topography, and then applied Minimum Cumulative Resistance (MCR) model to assess the surface water pollution risk from mineral exploitation. The results revealed that: (1) 9.5% of the water areas were located at the potential impact area of MEPs. (2) The total value of resistance surface in Liaoning is relatively low, and gradually decreased from west to east. (3) MEPs in Liaoning had a high risk and seriously threatened the surface water environment, among 2125 MEPs, 733 MEPs (32.99%) were assessed as extremely high risk level, and about 35% of the MEPs were distributed within 10KM buffer zone of surface water. (4) Water pollution risk of MEPs in Dalian, Tieling, Fuxin and Dandong need to be emphasized. (5) Compared to previous studies, we considered the topographical influence before applying MCR model directly, so the results of water pollution risk were more reliable. This study provides a methodological support and scientific reference for the water environment protection and regional sustainable development.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Químicos del Agua , China , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Minería , Medición de Riesgo , Contaminación Química del Agua/estadística & datos numéricos , Minerales/análisis
10.
Org Lett ; 26(28): 5905-5910, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38980194

RESUMEN

Herein, we present a straightforward approach to access hydroindoline-5-one-based 6/5/3-fused polycyclic ring structures through multistep cascade reactions involving α-aryl vinylsulfoniums and para-quinamines. The reactions proceed smoothly under mild conditions to deliver the desired products in generally good isolated yields. This protocol is also applicable to the cascade cycloaddition reactions of α-aryl vinylsulfoniums and para-quinols, effectively generating complex tricyclic scaffolds. In addition, the scale-up synthesis and further derivatizations demonstrate the potential synthetic application of the protocol.

11.
J Sci Food Agric ; 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38877787

RESUMEN

BACKGROUND: With the rapid development of deep learning, the recognition of rice disease images using deep neural networks has become a hot research topic. However, most previous studies only focus on the modification of deep learning models, while lacking research to systematically and scientifically explore the impact of different data sizes on the image recognition task for rice diseases. In this study, a functional model was developed to predict the relationship between the size of dataset and the accuracy rate of model recognition. RESULTS: Training VGG16 deep learning models with different quantities of images of rice blast-diseased leaves and healthy rice leaves, it was found that the test accuracy of the resulting models could be well fitted with an exponential model (A = 0.9965 - e(-0.0603×I50-1.6693)). Experimental results showed that with an increase of image quantity, the recognition accuracy of deep learning models would show a rapid increase at first. Yet when the image quantity increases beyond a certain threshold, the accuracy of image classification would not improve much, and the marginal benefit would be reduced. This trend remained similar when the composition of the dataset was changed, no matter whether (i) the disease class was changed, (ii) the number of classes was increased or (iii) the image data were augmented. CONCLUSIONS: This study provided a scientific basis for the impact of data size on the accuracy of rice disease image recognition, and may also serve as a reference for researchers for database construction. © 2024 Society of Chemical Industry.

12.
Inflamm Res ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896288

RESUMEN

BACKGROUND: Macrophage-mediated cleaning up of dead cells is a crucial determinant in reducing coronary artery inflammation and maintaining vascular homeostasis. However, this process also leads to programmed death of macrophages. So far, the role of macrophage death in the progression of atherosclerosis remains controversial. Also, the underlying mechanism by which transcriptional regulation and reprogramming triggered by macrophage death pathways lead to changes in vascular inflammation and remodeling are still largely unknown. TRIM25-mediated RIG-I signaling plays a key role in regulation of macrophages fate, however the role of TRIM25 in macrophage death-mediated atherosclerotic progression remains unclear. This study aims to investigate the relationship between TRIM25 and macrophage death in atherosclerosis. METHODS: A total of 34 blood samples of patients with coronary stent implantation, including chronic total occlusion (CTO) leisions (n = 14) or with more than 50% stenosis of a coronary artery but without CTO leisions (n = 20), were collected, and the serum level of TRIM25 was detected by ELISA. Apoe-/- mice with or without TRIM25 gene deletion were fed with the high-fat diet (HFD) for 12 weeks and the plaque areas, necrotic core size, aortic fibrosis and inflammation were investigated. TRIM25 wild-type and deficient macrophages were isolated, cultured and stimulated with ox-LDL, RNA-seq, real-time PCR, western blot and FACS experiments were used to screen and validate signaling pathways caused by TRIM25 deletion. RESULTS: Downregulation of TRIM25 was observed in circulating blood of CTO patients and also in HFD-induced mouse aortas. After HFD for 12 weeks, TRIM25-/-ApoeE-/- mice developed smaller atherosclerotic plaques, less inflammation, lower collagen content and aortic fibrosis compared with TRIM25+/+ApoeE-/- mice. By RNA-seq and KEGG enrichment analysis, we revealed that deletion of TRIM25 mainly affected pyroptosis and necroptosis pathways in ox-LDL-induced macrophages, and the expressions of PARP1 and RIPK3, were significantly decreased in TRIM25 deficient macrophages. Overexpression of TRIM25 promoted M1 polarization and necroptosis of macrophages, while inhibition of PARP1 reversed this process. Further, we observed that XRCC1, a repairer of DNA damage, was significantly upregulated in TRIM25 deficient macrophages, inhibiting PARP1 activity and PARP1-mediated pro-inflammatory change, M1 polarization and necroptosis of macrophages. By contrast, TRIM25 overexpression mediated ubiquitination of XRCC1, and the inhibition of XRCC1 released PARP1, and activated macrophage M1 polarization and necroptosis, which accelerated aortic inflammation and atherosclerotic plaque progression. CONCLUSIONS: Our study has uncovered a crucial role of the TRIM25-XRCC1Ub-PARP1-RIPK3 axis in regulating macrophage death during atherosclerosis, and we highlight the potential therapeutic significance of macrophage reprogramming regulation in preventing the development of atherosclerosis.

13.
Langmuir ; 40(26): 13688-13698, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38902198

RESUMEN

The structure-property relationship of poly(vinyl chloride) (PVC)/CaCO3 nanocomposites is investigated by all-atom molecular dynamics (MD) simulations. MD simulation results indicate that the dispersity of nanofillers, interfacial bonding, and chain mobility are imperative factors to improve the mechanical performance of nanocomposites, especially toughness. The tensile behavior and dissipated work of the PVC/CaCO3 model demonstrate that 12 wt % CaCO3 modified with oleate anion and dodecylbenzenesulfonate can impart high toughness to PVC due to its good dispersion, favorable interface interaction, and weak migration of PVC chains. Under the guidance of MD simulation, we experimentally prepared a transparent PVC/CaCO3 nanocomposite with good mechanical properties by in situ polymerization of monodispersed CaCO3 in vinyl chloride monomers. Interestingly, experimental tests indicate that the optimum toughness of a nanocomposite (a 368% increase in the elongation at break and 204% improvement of the impact strength) can be indeed realized by adding 12 wt % CaCO3 modified with oleic acid and dodecylbenzenesulfonic acid, which is remarkably consistent with the MD simulation prediction. In short, this work provides a proof-of-concept of using MD simulation to guide the experimental synthesis of PVC/CaCO3 nanocomposites, which can be considered as an example to develop other functional nanocomposites.

14.
BMC Cancer ; 24(1): 727, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877445

RESUMEN

BACKGROUND: The Naples Prognostic Score (NPS), integrating inflammatory and nutritional biomarkers, has been reported to be associated with the prognosis of various malignancies, but there is no report on intrahepatic cholangiocarcinoma (ICC). This study aimed to explore the prognostic value of NPS in patients with ICC. METHODS: Patients with ICC after hepatectomy were collected, and divided into three groups. The prognosis factors were determined by Cox regression analysis. Predictive efficacy was evaluated by the time-dependent receiver operating characteristic (ROC) curves. RESULTS: A total of 174 patients were included (Group 1: 33 (19.0%) patients; Group 2: 83 (47.7%) patients; and Group 3: 58 (33.3%) patients). The baseline characteristics showed the higher the NPS, the higher the proportion of patients with cirrhosis and Child-Pugh B, and more advanced tumors. The Kaplan-Meier curves reflect higher NPS were associated with poor survival. Multivariable analysis showed NPS was an independent risk factor of overall survival (NPS group 2 vs. 1: HR = 1.671, 95% CI: 1.022-3.027, p = 0.009; NPS group 3 vs. 1: HR = 2.208, 95% CI: 1.259-4.780, p = 0.007) and recurrence-free survival (NPS group 2 vs. 1: HR = 1.506, 95% CI: 1.184-3.498, p = 0.010; NPS group 3 vs. 1: HR = 2.141, 95% CI: 2.519-4.087, P = 0.001). The time ROC indicated NPS was superior to other models in predicting prognosis. CONCLUSIONS: NPS is a simple and effective tool for predicting the long-term survival of patients with ICC after hepatectomy. Patients with high NPS require close follow-up, and improving NPS may prolong the survival time.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Hepatectomía , Humanos , Colangiocarcinoma/cirugía , Colangiocarcinoma/mortalidad , Colangiocarcinoma/patología , Masculino , Femenino , Persona de Mediana Edad , Pronóstico , Neoplasias de los Conductos Biliares/cirugía , Neoplasias de los Conductos Biliares/mortalidad , Neoplasias de los Conductos Biliares/patología , Anciano , Curva ROC , Estudios Retrospectivos , Estimación de Kaplan-Meier , Adulto , Factores de Riesgo
15.
Respir Res ; 25(1): 246, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890628

RESUMEN

BACKGROUND: There is no individualized prediction model for intensive care unit (ICU) admission on patients with community-acquired pneumonia (CAP) and connective tissue disease (CTD) so far. In this study, we aimed to establish a machine learning-based model for predicting the need for ICU admission among those patients. METHODS: This was a retrospective study on patients admitted into a University Hospital in China between November 2008 and November 2021. Patients were included if they were diagnosed with CAP and CTD during admission and hospitalization. Data related to demographics, CTD types, comorbidities, vital signs and laboratory results during the first 24 h of hospitalization were collected. The baseline variables were screened to identify potential predictors via three methods, including univariate analysis, least absolute shrinkage and selection operator (Lasso) regression and Boruta algorithm. Nine supervised machine learning algorithms were used to build prediction models. We evaluated the performances of differentiation, calibration, and clinical utility of all models to determine the optimal model. The Shapley Additive Explanations (SHAP) and Local Interpretable Model-Agnostic Explanations (LIME) techniques were performed to interpret the optimal model. RESULTS: The included patients were randomly divided into the training set (1070 patients) and the testing set (459 patients) at a ratio of 70:30. The intersection results of three feature selection approaches yielded 16 predictors. The eXtreme gradient boosting (XGBoost) model achieved the highest area under the receiver operating characteristic curve (AUC) (0.941) and accuracy (0.913) among various models. The calibration curve and decision curve analysis (DCA) both suggested that the XGBoost model outperformed other models. The SHAP summary plots illustrated the top 6 features with the greatest importance, including higher N-terminal pro-B-type natriuretic peptide (NT-proBNP) and C-reactive protein (CRP), lower level of CD4 + T cell, lymphocyte and serum sodium, and positive serum (1,3)-ß-D-glucan test (G test). CONCLUSION: We successfully developed, evaluated and explained a machine learning-based model for predicting ICU admission in patients with CAP and CTD. The XGBoost model could be clinical referenced after external validation and improvement.


Asunto(s)
Infecciones Comunitarias Adquiridas , Enfermedades del Tejido Conjuntivo , Unidades de Cuidados Intensivos , Aprendizaje Automático , Admisión del Paciente , Neumonía , Humanos , Infecciones Comunitarias Adquiridas/diagnóstico , Infecciones Comunitarias Adquiridas/epidemiología , Masculino , Enfermedades del Tejido Conjuntivo/diagnóstico , Enfermedades del Tejido Conjuntivo/epidemiología , Femenino , Persona de Mediana Edad , Estudios Retrospectivos , Unidades de Cuidados Intensivos/tendencias , Anciano , Admisión del Paciente/tendencias , Neumonía/diagnóstico , Neumonía/epidemiología , Valor Predictivo de las Pruebas , China/epidemiología , Adulto
16.
Sci Rep ; 14(1): 13556, 2024 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866930

RESUMEN

Abnormalities in the extracellular matrix (ECM) play important roles in the regulation and progression of clear cell renal cell carcinoma (ccRCC). The cysteine cathepsin is one of the major proteases involved in ECM remodeling and has been shown to be aberrantly expressed in multiple cancer types. However, the clinical significance and biological function of distinct cysteine cathepsins in ccRCC remain poorly understood. In this study, several bioinformatics databases, including UALCAN, TIMER, GEPIA and the Human Protein Atlas datasets, were used to analyze the expression and prognostic value of different cysteine cathepsin family members in ccRCC. We found that the expression level of CTSF was downregulated in tumor tissues and closely related to the poor survival of ccRCC patients. Further in vitro experiments suggested that CTSF overexpression suppressed the proliferation and migration of ccRCC cells. Moreover, the expression of CTSF was shown to be associated with several immune-infiltrating cells and immunomodulators in ccRCC. These results indicated that CTSF might be a promising diagnostic and prognostic marker in ccRCC.


Asunto(s)
Carcinoma de Células Renales , Catepsina F , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Neoplasias Renales , Humanos , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/mortalidad , Pronóstico , Neoplasias Renales/patología , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Neoplasias Renales/mortalidad , Femenino , Masculino , Catepsina F/metabolismo , Catepsina F/genética , Línea Celular Tumoral , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Movimiento Celular/genética , Persona de Mediana Edad , Regulación hacia Abajo
17.
HPB (Oxford) ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38830783

RESUMEN

BACKGROUND: Postoperative complications are vital factors affecting the prognosis of patients with hepatocellular carcinoma (HCC), especially for complex hepatectomy. The present study aimed to compare perioperative complications between laparoscopic and robotic complex hepatectomy (LCH vs. RCH). METHODS: Patients with solitary HCC after complex hepatectomy were collected from a multicenter database. Propensity score-matched (PSM) analysis was adopted to control confounding bias. Multivariable analysis was performed to determine the prognostic factors. RESULTS: 436 patients were included. After PSM, 43 patients were included in both the LCH and RCH groups. The results showed that compared to LCH, RCH had lower rates of blood loss and transfusion, and lower postoperative 30-day and major morbidity, and post-hepatectomy liver failure (PHLF) (all P < 0.05). Additionally, the length of hospital stay was shorter in the RCH group (P = 0.026). Multivariable analysis showed RCH is an independent protective factor for reducing the 30-day morbidity, major morbidity and PHLF. CONCLUSION: RCH has advantages over LCH in the minimally invasive treatment of complex HCC, as it can reduce the incidence of postoperative morbidity. Therefore, RCH should be considered for patients with HCC who require complex hepatectomy.

18.
Front Pharmacol ; 15: 1330732, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38933667

RESUMEN

Ligustrum lucidum W.T. Aiton is an outstanding herb with the homology of medicine and food. Its ripe fruits are traditionally used as an important tonic for kidneys and liver in China. Ligustrum lucidum W.T. Aiton is rich in nutritional components and a variety of bioactive ingredients. A total of 206 compounds have been isolated and identified, they mainly include flavonoids, phenylpropanoids, iridoid glycosides, and triterpenoids. These compounds exert anti-osteoporosis, anti-tumor, liver protective, antioxidant, anti-inflammatory, and immunomodulatory effects. Ligustrum lucidum W.T. Aiton has been traditionally used to treat many complex diseases, including osteoporotic bone pain, rheumatic bone, cancer, related aging symptoms, and so on. In the 2020 Edition of Chinese Pharmacopoeia, there are more than 100 prescriptions containing L. lucidum W.T. Aiton. Among them, some classical preparations including Er Zhi Wan and Zhenqi fuzheng formula, are used in the treatment of various cancers with good therapeutic effects. Additionally, L. lucidum W.T. Aiton has also many excellent applications for functional food, ornamental plants, bioindicator of air pollution, algicidal agents, and feed additives. Ligustrum lucidum W.T. Aiton has rich plant resources. However, the application potential of it has not been fully exploited. We hope that this paper provides a theoretical basis for the high-value and high-connotation development of L. lucidum W.T. Aiton in the future.

19.
Front Plant Sci ; 15: 1392355, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38721334

RESUMEN

Selenium (Se) is a crucial micronutrient for human health. Plants are the primary source of Se for humans. Selenium in the soil serves as the primary source of Se for plants. The soil contains high total Se content in large areas in Guangxi, China. However, the available Se is low, hindering Se uptake by plants. Microorganisms play a pivotal role in the activation of Se in the soil, thereby enhancing its uptake by plants. In this study, selenobacteria were isolated from Se-rich soils in Guangxi. Then two selenobacteria strains, YLB1-6 and YLB2-1, representing the highest (30,000 µg/mL) and lowest (10,000 µg/mL) Se tolerance levels among the Se-tolerant bacteria, were selected for subsequent analysis. Although the two selenobacteria exhibited distinct effects, they can significantly transform Se species, resulting in a decrease in the soil residual Se (RES-Se) content while concurrently increasing the available Se (AVA-Se) content. Selenobacteria also enhance the transformation of Se valencies, with a significant increase observed in soluble Se6+ (SOL-Se6+). Additionally, selenobacteria can elevate the pH of acidic soil. Selenobacteria also promote the uptake of Se into plants. After treatment with YLB1-6 and YLB2-1, the Se content in the aboveground part of Chinese flowering cabbage increased by 1.96 times and 1.77 times, respectively, while the Se accumulation in the aboveground part of the plant significantly increased by 104.36% and 81.69%, respectively, compared to the control. Further whole-genome sequencing revealed the genetic difference between the two selenobacteria. Additionally, 46 and 38 candidate genes related to selenium utilization were identified from YLB1-6 and YLB2-1, respectively. This work accelerates our understanding of the potential molecular mechanism of Se biofortification by selenobacteria. It also provides microorganisms and gene targets for improving crop varieties or microorganisms to exploit the rich Se source in soil.

20.
Clin Oral Investig ; 28(6): 317, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38750335

RESUMEN

OBJECTIVES: To evaluate the effects of costochondral grafting (CCG) used for temporomandibular joint ankylosis (TMJA) in growing patients. MATERIALS AND METHODS: Pediatric patients with TMJA treated by CCG from 2010.5 to 2021.7 were included in the study. CT scans were performed before and after operations with at least 1 year follow-up. The height of the mandibular ramus, menton deviation or retraction, osteotomy gap, etc. were measured by ProPlan CMF1.4 software. CCG growth, resorption, and relapse were evaluated and analyzed with influencing factors such as age, ostectomy gap, etc. by generalized estimating equation. RESULTS: There were 24 patients (29 joints) with an average age of 6.30 ± 3.13 years in the study. After operation, the mandibular ramus was elongated by 5.97 ± 3.53 mm. Mandibular deviation or retrusion was corrected by 4.82 ± 2.84 mm and 3.76 ± 2.97 mm respectively. After a mean follow-up of 38.91 ± 29.20 months, 58.62% CCG grew (4.18 ± 7.70 mm), 20.69% absorbed (2.23 ± 1.16 mm), and 20.69% re-ankylosed. The re-ankylosis was negatively correlated with the osteotomy gap (OR:0.348,0.172-0.702 95%CI, critical value = 6.10 mm). CCG resorption was positively correlated with the distance of CCG ramus elongation (OR:3.353,1.173-9.586 95%CI, critical value = 7.40 mm). CONCLUSIONS: An adequate osteotomy gap and CCG ramus elongation distance are the key factors for successful treatment of TMJA with jaw deformities in growing patients. CLINICAL RELEVANCE: TMJA affects mouth opening and jaw development in pediatric patients. The most common autogenous bone graft for pediatric patients is CCG due to its growth potential, convenient access and easy contouring. Also, it can simultaneously reconstruct the TMJ and improve jaw deformity by lengthening the mandibular ramus. But the growth of CCG is unpredictable. In this study, we explored several factors that may affect the absorption and re-ankylosis of CCG, expecting to provide several suggestions to improve future CCG treatment.


Asunto(s)
Anquilosis , Trastornos de la Articulación Temporomandibular , Tomografía Computarizada por Rayos X , Humanos , Niño , Trastornos de la Articulación Temporomandibular/cirugía , Trastornos de la Articulación Temporomandibular/diagnóstico por imagen , Femenino , Anquilosis/cirugía , Masculino , Resultado del Tratamiento , Costillas/trasplante , Trasplante Óseo/métodos , Preescolar , Estudios Retrospectivos , Cartílago/trasplante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...