Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Nat Commun ; 15(1): 5127, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879565

RESUMEN

The Omicron subvariants BQ.1.1, XBB.1.5, and XBB.1.16 of SARS-CoV-2 are known for their adeptness at evading immune responses. Here, we isolate a neutralizing antibody, 7F3, with the capacity to neutralize all tested SARS-CoV-2 variants, including BQ.1.1, XBB.1.5, and XBB.1.16. 7F3 targets the receptor-binding motif (RBM) region and exhibits broad binding to a panel of 37 RBD mutant proteins. We develop the IgG-like bispecific antibody G7-Fc using 7F3 and the cross-neutralizing antibody GW01. G7-Fc demonstrates robust neutralizing activity against all 28 tested SARS-CoV-2 variants and sarbecoviruses, providing potent prophylaxis and therapeutic efficacy against XBB.1 infection in both K18-ACE and BALB/c female mice. Cryo-EM structure analysis of the G7-Fc in complex with the Omicron XBB spike (S) trimer reveals a trimer-dimer conformation, with G7-Fc synergistically targeting two distinct RBD epitopes and blocking ACE2 binding. Comparative analysis of 7F3 and LY-CoV1404 epitopes highlights a distinct and highly conserved epitope in the RBM region bound by 7F3, facilitating neutralization of the immune-evasive Omicron variant XBB.1.16. G7-Fc holds promise as a potential prophylactic countermeasure against SARS-CoV-2, particularly against circulating and emerging variants.


Asunto(s)
Anticuerpos Biespecíficos , Anticuerpos Antivirales , COVID-19 , Ratones Endogámicos BALB C , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Animales , SARS-CoV-2/inmunología , SARS-CoV-2/genética , Anticuerpos Biespecíficos/inmunología , Anticuerpos Biespecíficos/farmacología , COVID-19/inmunología , COVID-19/virología , COVID-19/prevención & control , Humanos , Femenino , Ratones , Anticuerpos Antivirales/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Anticuerpos Neutralizantes/inmunología , Pruebas de Neutralización , Microscopía por Crioelectrón , Células HEK293
2.
BMC Biol ; 21(1): 205, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37784185

RESUMEN

BACKGROUND: After the eradication of smallpox in China in 1979, vaccination with the vaccinia virus (VACV) Tiantan strain for the general population was stopped in 1980. As the monkeypox virus (MPXV) is rapidly spreading in the world, we would like to investigate whether the individuals with historic VACV Tiantan strain vaccination, even after more than 40 years, could still provide ELISA reactivity and neutralizing protection; and whether the unvaccinated individuals have no antibody reactivity against MPXV at all. RESULTS: We established serologic ELISA to measure the serum anti-MPXV titer by using immunodominant MPXV surface proteins, A35R, B6R, A29L, and M1R. A small proportion of individuals (born before 1980) with historic VACV Tiantan strain vaccination exhibited serum ELISA cross-reactivity against these MPXV surface proteins. Consistently, these donors also showed ELISA seropositivity and serum neutralization against VACV Tiantan strain. However, surprisingly, some unvaccinated young adults (born after 1980) also showed potent serum ELISA activity against MPXV proteins, possibly due to their past infection by some self-limiting Orthopoxvirus (OPXV). CONCLUSIONS: We report the serum ELISA cross-reactivity against MPXV surface protein in a small proportion of individuals both with and without VACV Tiantan strain vaccination history. Combined with our serum neutralization assay against VACV and the recent literature about mice vaccinated with VACV Tiantan strain, our study confirmed the anti-MPXV cross-reactivity and cross-neutralization of smallpox vaccine using VACV Tiantan strain. Therefore, it is necessary to restart the smallpox vaccination program in high risk populations.


Asunto(s)
Reacciones Cruzadas , Monkeypox virus , Vacuna contra Viruela , Vacunación , Animales , Humanos , Ratones , Adulto Joven , Formación de Anticuerpos , Pueblos del Este de Asia , Proteínas de la Membrana , Viruela/prevención & control , Virus Vaccinia , Vacuna contra Viruela/inmunología , Vacuna contra Viruela/uso terapéutico , China
4.
Diabetol Metab Syndr ; 15(1): 173, 2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37598203

RESUMEN

BACKGROUND AND AIMS: To assess the cost-effectiveness of utilizing IDegLira in comparison to other treatment regimens ( liraglutide and degludec) in managing type 2 diabetes, taking into account the Chinese healthcare system's perspective. METHODS: The clinical data were obtained from the randomized controlled trials (RCTs) of the DUAL I and DUAL II evidence studies that took place in China. To estimate the lifetime quality-adjusted life-years (QALYs) and direct medical costs of patients receiving different treatment strategies from a long-term perspective, the IQVIA CORE Diabetes Model version 9.0 (IQVIA, Basel, Switzerland) was utilized. The costs were evaluated from the perspective of the China National Health System. Future costs and clinical benefits were discounted annually at 5%, and sensitivity analyses were conducted. RESULTS: IDegLira was projected to reduce the incidence of diabetes-related complications and improve quality-adjusted life expectancy (QALE) versus liraglutide and degludec. A survival benefit was observed with IDegLira over Liraglutide (0.073 years). Lifetime costs were lower by Chinese yuan (CNY) 27,945 on IDegLira than on Liraglutide therapy. A similar survival benefit was observed with IDegLira over degludec (0.068 years). Lifetime costs were lower by CNY 1196 on IDegLira than on degludec therapy. Therefore, IDegLira was found to be cost-effective versus liraglutide and degludec with incremental cost-effectiveness ratios of Dominant per QALY gained, respectively, under the threshold of three times the gross domestic product (GDP) per capita in China. CONCLUSION: IDegLira is a cost-effective hypoglycemic treatment option that delivers positive clinical outcomes while also reducing costs for Chinese patients living with type 2 diabetes.

5.
J Med Virol ; 95(4): e28721, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37185862

RESUMEN

The ectodomain of influenza matrix protein 2 (M2e) is a promising target for the development of universal prophylactic and therapeutic agents against influenza viruses of different subtypes. We constructed three M2e-specific monoclonal antibody variants, M2A1-1 (IgG1), M2A1-2a (IgG2a), M2A1-2b (IgG2b), which have the same Fab region targeting the M2e epitope but different isotypes, and compared their protective efficacy in influenza PR8-infected mice. We found that anti-M2e antibodies provided protection against influenza virus in a subtype-dependent manner, with the IgG2a variant providing significantly better protection with lower virus titers and milder lung injury than IgG1 and IgG2b isotypes. Additionally, we observed that the protective efficacy was dependent on the administration routes, with intranasal administration of antibody providing better protection than intraperitoneal administration. The timing of administration was also critical in determining the protective efficacy; while all the antibody isotypes provided protection when administered before influenza challenge, only IgG2a provided minimal protection when the antibodies were administered after virus challenge. These results provide valuable information for optimizing the therapeutics usage of M2e-based antibodies and furthering the development of M2e-based universal influenza vaccines.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Orthomyxoviridae , Animales , Ratones , Humanos , Anticuerpos Antivirales , Inmunoglobulina G , Proteínas de la Matriz Viral/genética , Ratones Endogámicos BALB C
6.
J Med Virol ; 95(3): e28641, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36890632

RESUMEN

Numerous emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariants have shown significant immune evasion capacity and caused a large number of infections, as well as vaccine-breakthrough infections, especially in elderly populations. Recently emerged Omicron XBB was derived from the BA.2 lineage, but bears a distinct mutant profile in its spike (S) protein. In this study, we found that Omicron XBB S protein drove more efficient membrane-fusion kinetics on human lung-derived cells (Calu-3). Considering the high susceptibility of the elderly to the current Omicron pandemic, we performed a comprehensive neutralization assessment of elderly convalescent or vaccine sera against XBB infection. We found that the sera from elderly convalescent patients who experienced with BA.2 infection or breakthrough infection potently inhibited BA.2 infection, but showed significantly reduced efficacy against XBB. Moreover, recently emerged XBB.1.5 subvariant also showed more significant resistance to the convalescent sera of BA.2- or BA.5-infected elderly. On the other hand, we found that the pan-CoV fusion inhibitors EK1 and EK1C4 can potently block either XBB-S- or XBB.1.5-S-mediated fusion process and viral entry. Moreover, EK1 fusion inhibitor showed potent synergism when combined with convalescent sera of BA.2- or BA.5-infected patients against XBB and XBB.1.5 infection, further indicating that EK1-based pan-CoV fusion inhibitors are promising candidates for development as clinical antiviral agents to combat the Omicron XBB subvariants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anciano , Humanos , SARS-CoV-2/genética , Evasión Inmune , Sueroterapia para COVID-19 , Antirretrovirales , Infección Irruptiva , Glicoproteína de la Espiga del Coronavirus/genética , Anticuerpos Neutralizantes , Anticuerpos Antivirales
7.
Proc Natl Acad Sci U S A ; 120(11): e2221713120, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36897979

RESUMEN

The recently emerged Omicron subvariants XBB and BQ.1.1 have presented striking immune evasion against most monoclonal neutralizing antibodies and convalescent plasma. Therefore, it is essential to develop broad-spectrum COVID-19 vaccines to combat current and future emerging variants. Here, we found that the human IgG Fc-conjugated RBD of the original SARS-CoV-2 strain (WA1) plus a novel STING agonist-based adjuvant CF501 (CF501/RBD-Fc) could induce highly potent and durable broad-neutralizing antibody (bnAb) responses against Omicron subvariants, including BQ.1.1 and XBB in rhesus macaques with NT50s ranging from 2,118 to 61,742 after three doses. A decline of 0.9- to 4.7-fold was observed in the neutralization activity of sera in the CF501/RBD-Fc group against BA.2.2, BA.2.9, BA.5, BA.2.75, and BF.7 relative to D614G after three doses, while a significant decline of NT50 against BQ.1.1 (26.9-fold) and XBB (22.5-fold) relative to D614G. However, the bnAbs were still effective in neutralizing BQ.1.1 and XBB infection. These results suggest that the conservative but nondominant epitopes in RBD could be stimulated by CF501 to generate bnAbs, providing a proof-of-concept for using "nonchangeable against changeables" strategy to develop pan-sarbecovirus vaccines against sarbecoviruses, including SARS-CoV-2 and its variants.


Asunto(s)
COVID-19 , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Vacunas , Animales , Humanos , SARS-CoV-2 , Anticuerpos Neutralizantes , Vacunas contra la COVID-19 , Anticuerpos ampliamente neutralizantes , Macaca mulatta , Sueroterapia para COVID-19 , Anticuerpos Monoclonales , Anticuerpos Antivirales , Glicoproteína de la Espiga del Coronavirus
8.
Cell Discov ; 8(1): 104, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36207299

RESUMEN

The highly mutated and transmissible Omicron (BA.1) and its more contagious lineage BA.2 have provoked serious concerns over their decreased sensitivity to the current COVID-19 vaccines and evasion from most anti-SARS-CoV-2 neutralizing antibodies (NAbs). In this study, we explored the possibility of combating the Omicron and BA.2 by constructing bispecific antibodies based on non-Omicron NAbs. We engineered 10 IgG-like bispecific antibodies with non-Omicron NAbs named GW01, 16L9, 4L12, and REGN10987 by fusing the single-chain variable fragments (scFvs) of two antibodies through a linker and then connecting them to the Fc region of IgG1. Surprisingly, 8 out of 10 bispecific antibodies showed high binding affinities to the Omicron receptor-binding domain (RBD) and exhibited extreme breadth and potency against pseudotyped SARS-CoV-2 variants of concern (VOCs) including Omicron and BA.2, with geometric mean of 50% inhibitory concentration (GM IC50) values ranging from 4.5 ng/mL to 103.94 ng/mL, as well as the authentic BA.1.1. Six bispecific antibodies containing the cross-NAb GW01 not only neutralized Omicron and BA.2, but also neutralized the sarbecoviruses including SARS-CoV and SARS-related coronaviruses (SARSr-CoVs) RS3367 and WIV1, with GM IC50 ranging from 11.6 ng/mL to 103.9 ng/mL. Mapping analyses of 42 spike (S) variant single mutants of Omicron and BA.2 elucidated that these bispecific antibodies accommodated the S371L/F mutations, which were resistant to most of the non-Omicron NAbs. A cryo-electron microscopy (cryo-EM) structure study of the representative bispecific antibody GW01-16L9 (FD01) in its native full-length IgG form in complex with the Omicron S trimer revealed 5 distinct trimers and one novel trimer dimer conformation. 16L9 scFv binds the receptor-binding motif (RBM), while GW01 scFv binds a epitope outside the RBM. Two scFvs of the bispecific antibody synergistically induced the RBD-down conformation into 3 RBD-up conformation, improved the affinity between IgG and the Omicron RBD, induced the formation of trimer dimer, and inhibited RBD binding to ACE2. The trimer dimer conformation might induce the aggregation of virions and contribute to the neutralization ability of FD01. These novel bispecific antibodies are strong candidates for the treatment and prevention of infection with the Omicron, BA.2, VOCs, and other sarbecoviruses. Engineering bispecific antibodies based on non-Omicron NAbs could turn the majority of NAbs into a powerful arsenal to aid the battle against the pandemic.

10.
Cell Discov ; 8(1): 36, 2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35443747

RESUMEN

The emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants of concern, including Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529) has aroused concerns over their increased infectivity and transmissibility, as well as decreased sensitivity to SARS-CoV-2-neutralizing antibodies (NAbs) and the current coronavirus disease 2019 (COVID-19) vaccines. Such exigencies call for the development of pan-sarbecovirus vaccines or inhibitors to combat the circulating SARS-CoV-2 NAb-escape variants and other sarbecoviruses. In this study, we isolated a broadly NAb against sarbecoviruses named GW01 from a donor who recovered from COVID-19. Cryo-EM structure and competition assay revealed that GW01 targets a highly conserved epitope in a wide spectrum of different sarbecoviruses. However, we found that GW01, the well-known sarbecovirus NAb S309, and the potent SARS-CoV-2 NAbs CC12.1 and REGN10989 only neutralize about 90% of the 56 tested currently circulating variants of SARS-CoV-2 including Omicron. Therefore, to improve efficacy, we engineered an IgG-like bispecific antibody GW01-REGN10989 (G9) consisting of single-chain antibody fragments (scFv) of GW01 and REGN10989. We found that G9 could neutralize 100% of NAb-escape mutants (23 out of 23), including Omicron variant, with a geometric mean (GM) 50% inhibitory concentration of 8.8 ng/mL. G9 showed prophylactic and therapeutic effects against SARS-CoV-2 infection of both the lung and brain in hACE2-transgenic mice. Site-directed mutagenesis analyses revealed that GW01 and REGN10989 bind to the receptor-binding domain in different epitopes and from different directions. Since G9 targets the epitopes for both GW01 and REGN10989, it was effective against variants with resistance to GW01 or REGN10989 alone and other NAb-escape variants. Therefore, this novel bispecific antibody, G9, is a strong candidate for the treatment and prevention of infection by SARS-CoV-2, NAb-escape variants, and other sarbecoviruses that may cause future emerging or re-emerging coronavirus diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA