Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Nat Commun ; 13(1): 6993, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36384944

RESUMEN

Brain function depends on synaptic connections between specific neuron types, yet systematic descriptions of synaptic networks and their molecular properties are not readily available. Here, we introduce SBARRO (Synaptic Barcode Analysis by Retrograde Rabies ReadOut), a method that uses single-cell RNA sequencing to reveal directional, monosynaptic relationships based on the paths of a barcoded rabies virus from its "starter" postsynaptic cell to that cell's presynaptic partners. Thousands of these partner relationships can be ascertained in a single experiment, alongside genome-wide RNAs. We use SBARRO to describe synaptic networks formed by diverse mouse brain cell types in vitro, finding that different cell types have presynaptic networks with differences in average size and cell type composition. Patterns of RNA expression suggest that functioning synapses are critical for rabies virus uptake. By tracking individual rabies clones across cells, SBARRO offers new opportunities to map the synaptic organization of neural circuits.


Asunto(s)
Virus de la Rabia , Rabia , Ratones , Animales , Virus de la Rabia/genética , Sinapsis/fisiología , Neuronas/fisiología , ARN
3.
Cell ; 184(22): 5622-5634.e25, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34610277

RESUMEN

Disinhibitory neurons throughout the mammalian cortex are powerful enhancers of circuit excitability and plasticity. The differential expression of neuropeptide receptors in disinhibitory, inhibitory, and excitatory neurons suggests that each circuit motif may be controlled by distinct neuropeptidergic systems. Here, we reveal that a bombesin-like neuropeptide, gastrin-releasing peptide (GRP), recruits disinhibitory cortical microcircuits through selective targeting and activation of vasoactive intestinal peptide (VIP)-expressing cells. Using a genetically encoded GRP sensor, optogenetic anterograde stimulation, and trans-synaptic tracing, we reveal that GRP regulates VIP cells most likely via extrasynaptic diffusion from several local and long-range sources. In vivo photometry and CRISPR-Cas9-mediated knockout of the GRP receptor (GRPR) in auditory cortex indicate that VIP cells are strongly recruited by novel sounds and aversive shocks, and GRP-GRPR signaling enhances auditory fear memories. Our data establish peptidergic recruitment of selective disinhibitory cortical microcircuits as a mechanism to regulate fear memories.


Asunto(s)
Corteza Auditiva/metabolismo , Bombesina/metabolismo , Miedo/fisiología , Memoria/fisiología , Red Nerviosa/metabolismo , Secuencia de Aminoácidos , Animales , Calcio/metabolismo , Señalización del Calcio , Condicionamiento Clásico , Péptido Liberador de Gastrina/química , Péptido Liberador de Gastrina/metabolismo , Regulación de la Expresión Génica , Genes Inmediatos-Precoces , Células HEK293 , Humanos , Espacio Intracelular/metabolismo , Masculino , Ratones Endogámicos C57BL , Receptores de Bombesina/metabolismo , Sonido , Péptido Intestinal Vasoactivo/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33443190

RESUMEN

The release of urine, or micturition, serves a fundamental physiological function and, in many species, is critical for social communication. In mice, the pattern of urine release is modulated by external and internal factors and transmitted to the spinal cord via the pontine micturition center (PMC). Here, we exploited a behavioral paradigm in which mice, depending on strain, social experience, and sensory context, either vigorously cover an arena with small urine spots or deposit urine in a few isolated large spots. We refer to these micturition modes as, respectively, high and low territory-covering micturition (TCM) and find that the presence of a urine stimulus robustly induces high TCM in socially isolated mice. Comparison of the brain networks activated by social isolation and by urine stimuli to those upstream of the PMC identified the lateral hypothalamic area as a potential modulator of micturition modes. Indeed, chemogenetic manipulations of the lateral hypothalamus can switch micturition behavior between high and low TCM, overriding the influence of social experience and sensory context. Our results suggest that both inhibitory and excitatory signals arising from a network upstream of the PMC are integrated to determine context- and social-experience-dependent micturition patterns.


Asunto(s)
Hipotálamo/fisiología , Aislamiento Social/psicología , Micción/fisiología , Animales , Encéfalo/fisiología , Comunicación , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Puente/fisiología , Reflejo/fisiología , Médula Espinal/fisiología , Vejiga Urinaria/fisiología , Micción/genética
5.
Front Cell Neurosci ; 14: 65, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32265666

RESUMEN

Viral vectors are essential tools for the study of neural circuits, with glycoprotein-deleted rabies viruses being widely used for monosynaptic retrograde tracing to map connectivity between specific cell types in the nervous system. However, the use of rabies virus is limited by the cytotoxicity and the inflammatory responses these viruses trigger. While components of the rabies virus genome contribute to its cytotoxic effects, the function of other neuronal and non-neuronal cells within the vicinity of the infected host neurons in either effecting or mitigating virally-induced tissue damage are still being elucidated. Here, we analyzed 60,212 single-cell RNA profiles to assess both global and cell-type-specific transcriptional responses in the mouse dorsal raphe nucleus (DRN) following intracranial injection of glycoprotein-deleted rabies viruses and axonal infection of dorsal raphe serotonergic neurons. Gene pathway analyses revealed a down-regulation of genes involved in metabolic processes and neurotransmission following infection. We also identified several transcriptionally diverse leukocyte populations that infiltrate the brain and are distinct from resident immune cells. Cell type-specific patterns of cytokine expression showed that antiviral responses were likely orchestrated by Type I and Type II interferon signaling from microglia and infiltrating CD4+ T cells, respectively. Additionally, we uncovered transcriptionally distinct states of microglia along an activation trajectory that may serve different functions, which range from surveillance to antigen presentation and cytokine secretion. Intercellular interactions inferred from transcriptional data suggest that CD4+ T cells facilitate microglial state transitions during the inflammatory response. Our study uncovers the heterogeneity of immune cells mediating neuroinflammatory responses and provides a critical evaluation of the compatibility between rabies-mediated connectivity mapping and single-cell transcriptional profiling. These findings provide additional insights into the distinct contributions of various cell types in mediating different facets of antiviral responses in the brain and will facilitate the design of strategies to circumvent immune responses to improve the efficacy of viral gene delivery.

6.
Elife ; 92020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-32043968

RESUMEN

The lateral habenula (LHb) is an epithalamic brain structure critical for processing and adapting to negative action outcomes. However, despite the importance of LHb to behavior and the clear anatomical and molecular diversity of LHb neurons, the neuron types of the habenula remain unknown. Here, we use high-throughput single-cell transcriptional profiling, monosynaptic retrograde tracing, and multiplexed FISH to characterize the cells of the mouse habenula. We find five subtypes of neurons in the medial habenula (MHb) that are organized into anatomical subregions. In the LHb, we describe four neuronal subtypes and show that they differentially target dopaminergic and GABAergic cells in the ventral tegmental area (VTA). These data provide a valuable resource for future study of habenular function and dysfunction and demonstrate neuronal subtype specificity in the LHb-VTA circuit.


Asunto(s)
Habénula/metabolismo , Transcriptoma , Animales , Mapeo Encefálico , Neuronas Dopaminérgicas , Neuronas GABAérgicas , Perfilación de la Expresión Génica , Habénula/citología , Ratones , Análisis de la Célula Individual , Área Tegmental Ventral/citología
7.
Elife ; 82019 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-31411560

RESUMEN

The dorsal raphe nucleus (DRN) is an important source of neuromodulators and has been implicated in a wide variety of behavioral and neurological disorders. The DRN is subdivided into distinct anatomical subregions comprised of multiple cell types, and its complex cellular organization has impeded efforts to investigate the distinct circuit and behavioral functions of its subdomains. Here we used single-cell RNA sequencing, in situ hybridization, anatomical tracing, and spatial correlation analysis to map the transcriptional and spatial profiles of cells from the mouse DRN. Our analysis of 39,411 single-cell transcriptomes revealed at least 18 distinct neuron subtypes and 5 serotonergic neuron subtypes with distinct molecular and anatomical properties, including a serotonergic neuron subtype that preferentially innervates the basal ganglia. Our study lays out the molecular organization of distinct serotonergic and non-serotonergic subsystems, and will facilitate the design of strategies for further dissection of the DRN and its diverse functions.


Asunto(s)
Núcleo Dorsal del Rafe/anatomía & histología , Núcleo Dorsal del Rafe/citología , Neuronas/clasificación , Animales , Perfilación de la Expresión Génica , Genotipo , Hibridación in Situ , Ratones , Técnicas de Trazados de Vías Neuroanatómicas , Fenotipo , Análisis de Secuencia de ARN , Análisis Espacial
8.
Neuron ; 102(3): 636-652.e7, 2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-30905392

RESUMEN

The thalamic parafascicular nucleus (PF), an excitatory input to the basal ganglia, is targeted with deep-brain stimulation to alleviate a range of neuropsychiatric symptoms. Furthermore, PF lesions disrupt the execution of correct motor actions in uncertain environments. Nevertheless, the circuitry of the PF and its contribution to action selection are poorly understood. We find that, in mice, PF has the highest density of striatum-projecting neurons among all sub-cortical structures. This projection arises from transcriptionally and physiologically distinct classes of PF neurons that are also reciprocally connected with functionally distinct cortical regions, differentially innervate striatal neurons, and are not synaptically connected in PF. Thus, mouse PF contains heterogeneous neurons that are organized into parallel and independent associative, limbic, and somatosensory circuits. Furthermore, these subcircuits share motifs of cortical-PF-cortical and cortical-PF-striatum organization that allow each PF subregion, via its precise connectivity with cortex, to coordinate diverse inputs to striatum.


Asunto(s)
Corteza Cerebral/citología , Cuerpo Estriado/citología , Núcleos Talámicos Intralaminares/citología , Neuronas/citología , Animales , Corteza Cerebral/fisiología , Cuerpo Estriado/fisiología , Perfilación de la Expresión Génica , Núcleos Talámicos Intralaminares/fisiología , Ratones , Vías Nerviosas , Técnicas de Trazados de Vías Neuroanatómicas , Neuronas/metabolismo , Neuronas/fisiología , Técnicas de Placa-Clamp , Análisis de la Célula Individual , Tálamo/citología , Tálamo/fisiología
9.
Biol Psychiatry ; 84(12): 893-904, 2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29921416

RESUMEN

BACKGROUND: The nucleus accumbens (NAc) is a brain region implicated in pathological motivated behaviors such as drug addiction and is composed predominantly of two discrete populations of neurons, dopamine receptor-1- and dopamine receptor-2-expressing medium spiny neurons (D1-MSNs and D2-MSNs, respectively). It is unclear whether these populations receive inputs from different brain areas and whether input regions to these cell types undergo distinct structural adaptations in response to the administration of addictive drugs such as cocaine. METHODS: Using a modified rabies virus-mediated tracing method, we created a comprehensive brain-wide monosynaptic input map to NAc D1- and D2-MSNs. Next, we analyzed nearly 2000 dendrites and 125,000 spines of neurons across four input regions (the prelimbic cortex, medial orbitofrontal cortex, basolateral amygdala, and ventral hippocampus) at four separate time points during cocaine administration and withdrawal to examine changes in spine density in response to repeated intraperitoneal cocaine injection in mice. RESULTS: D1- and D2-MSNs display overall similar input profiles, with the exception that D1-MSNs receive significantly more input from the medial orbitofrontal cortex. We found that neurons in distinct brain areas projecting to D1- and D2-MSNs display different adaptations in dendritic spine density at different stages of cocaine administration and withdrawal. CONCLUSIONS: While NAc D1- and D2-MSNs receive input from similar brain structures, cocaine-induced spine density changes in input regions are quite distinct and dynamic. While previous studies have focused on input-specific postsynaptic changes within NAc MSNs in response to cocaine, these findings emphasize the dramatic changes that occur in the afferent input regions as well.


Asunto(s)
Cocaína/efectos adversos , Dendritas/efectos de los fármacos , Neuronas Dopaminérgicas/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Receptores de Dopamina D1/efectos de los fármacos , Receptores de Dopamina D2/efectos de los fármacos , Animales , Dendritas/ultraestructura , Espinas Dendríticas/fisiología , Inhibidores de Captación de Dopamina/administración & dosificación , Neuronas Dopaminérgicas/ultraestructura , Ratones , Ratones Endogámicos C57BL , Núcleo Accumbens/citología , Transducción de Señal/efectos de los fármacos
10.
Cell Rep ; 19(5): 1045-1055, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28467898

RESUMEN

The motor cortico-basal ganglion loop is critical for motor planning, execution, and learning. Balanced excitation and inhibition in this loop is crucial for proper motor output. Excitatory neurons have been thought to be the only source of motor cortical input to the striatum. Here, we identify long-range projecting GABAergic neurons in the primary (M1) and secondary (M2) motor cortex that target the dorsal striatum. This population of projecting GABAergic neurons comprises both somatostatin-positive (SOM+) and parvalbumin-positive (PV+) neurons that target direct and indirect pathway striatal output neurons as well as cholinergic interneurons differentially. Notably, optogenetic stimulation of M1 PV+ and M2 SOM+ projecting neurons reduced locomotion, whereas stimulation of M1 SOM+ projecting neurons enhanced locomotion. Thus, corticostriatal GABAergic projections modulate striatal output and motor activity.


Asunto(s)
Cuerpo Estriado/fisiología , Neuronas GABAérgicas/metabolismo , Actividad Motora , Animales , Neuronas Colinérgicas/metabolismo , Neuronas Colinérgicas/fisiología , Cuerpo Estriado/citología , Cuerpo Estriado/metabolismo , Vías Eferentes/metabolismo , Vías Eferentes/fisiología , Neuronas GABAérgicas/fisiología , Interneuronas/metabolismo , Interneuronas/fisiología , Masculino , Ratones , Parvalbúminas/genética , Parvalbúminas/metabolismo , Somatostatina/genética , Somatostatina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA