Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 279(Pt 2): 135234, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39218189

RESUMEN

The mechanisms by which low light accelerates starch macromolecules degradation by auxin and gibberellin (GA) in geophytes during sprouting remain largely unknown. This study investigated these mechanisms in saffron, grown under low light (50 µmol m-2 s-1) and optimal light (200 µmol m-2 s-1) during the sprouting phase. Low light reduced starch concentration in corms by 34.0 % and increased significantly sucrose levels in corms, leaves, and leaf sheaths by 19.2 %, 9.8 %, and 134.5 %, respectively. This was associated with a 33.3 % increase in GA3 level and enhanced auxin signaling. Leaves synthesized IAA under low light, which was transported to the corms to promote GA synthesis, facilitating starch degradation through a 228.7 % increase in amylase activity. Exogenous applications of GA and IAA, as well as the use of their synthesis or transport inhibitors, confirmed the synergistic role of these phytohormones in starch metabolism. The unigenes associated with GA biosynthesis and auxin signaling were upregulated under low light, highlighting the IAA-GA module role in starch degradation. Moreover, increased respiration rate and invertase activity, crucial for ATP biosynthesis and the tricarboxylic acid cycle, were consistent with the upregulation of related unigenes, suggesting that auxin signaling accelerates starch degradation by promoting energy metabolism. Upregulated of auxin signaling (CsSAUR32) and starch metabolism (CsSnRK1) genes under low light suggests that auxin directly regulate starch degradation in saffron corms. This study elucidates that low light modulates auxin and GA interactions to accelerate starch degradation in saffron corms during sprouting, offering insights for optimizing agricultural practices under suboptimal light conditions.

2.
Molecules ; 28(21)2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37959658

RESUMEN

Liver fibrosis refers to a complex inflammatory response caused by multiple factors, which is a known cause of liver cirrhosis and even liver cancer. As a valuable medicine food homology herb, saffron has been widely used in the world. Saffron is commonly used in liver-related diseases and has rich therapeutic and health benefits. The therapeutic effect is satisfactory, but its mechanism is still unclear. In order to clarify these problems, we planned to determine the pharmacological effects and mechanisms of saffron extract in preventing and treating liver fibrosis through network pharmacology analysis combined with in vivo validation experiments. Through UPLC-Q-Exactive-MS analysis, a total of fifty-six nutrients and active ingredients were identified, and nine of them were screened to predict their therapeutic targets for liver fibrosis. Then, network pharmacology analysis was applied to identify 321 targets for saffron extract to alleviate liver fibrosis. Functional and pathway enrichment analysis showed that the putative targets of saffron for the treatment of hepatic fibrosis are mainly involved in the calcium signaling pathway, the HIF-1 signaling pathway, endocrine resistance, the PI3K/Akt signaling pathway, lipid and atherosclerosis, and the cAMP signaling pathway. Based on the CCl4-induced liver fibrosis mice model, we experimentally confirmed that saffron extract can alleviate the severity and pathological changes during the progression of liver fibrosis. RT-PCR and Western blotting analysis confirmed that saffron treatment can prevent the CCl4-induced upregulation of HIF-1α, VEGFA, AKT, and PI3K, suggesting that saffron may regulate AKT/HIF-1α/VEGF and alleviate liver fibrosis.


Asunto(s)
Crocus , Medicamentos Herbarios Chinos , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Crocus/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Colorantes/farmacología , Medicamentos Herbarios Chinos/farmacología
3.
J Agric Food Chem ; 71(43): 16221-16232, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37870279

RESUMEN

Safflower (Carthamus tinctorius L.) is a multipurpose economic crop that is distributed worldwide. Flavonoid glycosides are the main bioactive components in safflower, but only a few UDP-glycosyltransferases (UGT) have been identified. Three differentially expressed UGT genes related with the accumulation of 9 flavonoid O-glycosides were screened from metabolomics and transcriptome analysis. Safflower corolla protoplasts were used to confirm the glycosylation ability of UGT candidates in vivo for the first time. The astragalin content was significantly increased only when CtUGT3 was overexpressed. CtUGT3 also showed flavonoid 3-OH and 7-OH glycosylation activities in vitro. Molecular modeling and site-directed mutagenesis revealed that G15, T136, S276, and E384 were critical catalytic residues for the glycosylation ability of CtUGT3. These results demonstrate that CtUGT3 has a flavonoid 3-OH glycosylation function and is involved in the biosynthesis of astragalin in safflower. This study provides a reference for flavonoid biosynthesis genes research in nonmodel plants.


Asunto(s)
Carthamus tinctorius , Carthamus tinctorius/genética , Perfilación de la Expresión Génica , Flavonoides/química , Glicósidos/química , Glicosiltransferasas/genética
4.
Phytomedicine ; 118: 154959, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37478684

RESUMEN

BACKGROUND: Type 2 diabetic nephropathy is a common diabetic complication and the main cause of death in patients with diabetes. Research has aimed to find an ideal drug with minimal side effects for treating this disease. Banana peel has been shown to be anti-diabetic, with lupenone isolated from banana peel exhibiting antidiabetic and anti-inflammatory activities; However, the effects of lupenone on type 2 diabetic nephropathy are largely unknown. PURPOSE: This study aimed to investigate the ameliorative effect of lupenone on type 2 diabetic nephropathy, and its mechanism from both anti-inflammatory and anti-fibrotic perspectives. METHODS: Spontaneous type 2 diabetic nephropathy db/db mouse models were given three levels of lupenone (24 or 12 or 6 mg/kg/d) via intragastric administration for six weeks, and irbesartan treatment was used for the positive control group. We explored the effects and mechanism of lupenone action using enzyme-linked immunosorbent assay, automatic biochemical analyzer, hematoxylin-eosin and Masson staining, real time-PCR, and western blotting. Concurrently, a high-sugar and high-fat diet combined with a low-dose streptozotocin-induced type 2 diabetic nephropathy rat model was used for confirmatory research. RESULTS: Lupenone administration maintained the fasting blood glucose; reduced glycosylated hemoglobin, insulin, and 24 h proteinuria levels; and markedly regulated changes in biochemical indicators associated with kidney injury in serum and urine (including 24 h proteinuria, micro-albumin, N-acetyl-ß-d-glucosaminidase, α1-micro-globulin, creatinine, urea nitrogen, uric acid, total protein, and albumin) of type 2 diabetic nephropathy mice and rats. Hematoxylin-eosin and Masson staining as well as molecular biology tests revealed that inflammation and fibrosis are the two key processes affected by lupenone treatment. Lupenone protected type 2 diabetic nephropathy kidneys by regulating the NF-κB-mediated inflammatory response and TGF-ß1/Smad/CTGF pathway-associated fibrosis. CONCLUSION: Lupenone has potential as an innovative drug for preventing and treating diabetic nephropathy. Additionally, it has great value for the utilization of banana peel resources.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Ratas , Ratones , Animales , Nefropatías Diabéticas/metabolismo , FN-kappa B/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Eosina Amarillenta-(YS)/metabolismo , Hematoxilina/metabolismo , Hematoxilina/farmacología , Hematoxilina/uso terapéutico , Riñón , Inflamación/tratamiento farmacológico , Fibrosis , Antiinflamatorios/farmacología , Diabetes Mellitus Tipo 2/metabolismo , Proteinuria
5.
Arab J Chem ; 16(9): 105001, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37228247

RESUMEN

Both diabetes and Corona Virus Disease 2019 (COVID-19) are seriously harmful to human health, and they are closely related. It is of great significance to find drugs that can simultaneously treat diabetes and COVID-19. Based on the theory of traditional Chinese medicine for treating COVID-19, this study first sorted out the compounds of Guizhou Miao medicine with "return to the lung channel" and "clear heat and detoxify" effects in China. The active components against COVID-19 were screened by molecular docking with SARS-CoV-2 PLpro and angiotensin-converting enzyme II as targets. Furthermore, the common target dipeptidyl peptidase 4 (DPP4) of diabetes and COVID-19 was used as a screening protein, and molecular docking was used to obtain potential components for the treatment of diabetes and COVID-19. Finally, the mechanism of potential ingredients in the treatment of diabetes and COVID-19 was explored with bioinformatics. More than 80 kinds of Miao medicine were obtained, and 584 compounds were obtained. Further, 110 compounds against COVID-19 were screened, and top 6 potential ingredients for the treatment of diabetes and COVID-19 were screened, including 3-O-ß-D-Xylopyranosyl-(1-6)-ß-D-glucopyranosyl-(1-6)-ß-D-glucopyranosyl oleanolic acid 28-O-ß-D-glucopyranosyl ester, Glycyrrhizic acid, Sequoiaflavone, 2-O-Caffeoyl maslinic acid, Pholidotin, and Ambewelamide A. Bioinformatics analysis found that their mechanism of action in treating diabetes and COVID-19 may be related to regulating the expression of DPP4, angiotensin II type 1 receptor, vitamin D receptor, plasminogen, chemokine C-C-motif receptor 6, and interleukin 2. We believe that Guizhou Miao medicine is rich in potential ingredients for the treatment of diabetes and COVID-19.

6.
Sci Rep ; 13(1): 6022, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-37055447

RESUMEN

Angelica dahurica (Angelica dahurica Fisch. ex Hoffm.) is widely used as a traditional Chinese medicine and the secondary metabolites have significant pharmacological activities. Drying has been shown to be a key factor affecting the coumarin content of Angelica dahurica. However, the underlying mechanism of metabolism is unclear. This study sought to determine the key differential metabolites and metabolic pathways related to this phenomenon. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) based targeted metabolomics analysis was performed on Angelica dahurica that were freeze-drying (- 80 °C/9 h) and oven-drying (60 °C/10 h). Furthermore, the common metabolic pathways of paired comparison groups were performed based on KEEG enrichment analysis. The results showed that 193 metabolites were identified as key differential metabolites, most of which were upregulated under oven drying. It also displayed that many significant contents of PAL pathways were changed. This study revealed the large-scale recombination events of metabolites in Angelica dahurica. First, we identified additional active secondary metabolites apart from coumarins, and volatile oil were significantly accumulated in Angelica dahurica. We further explored the specific metabolite changes and mechanism of the phenomenon of coumarin upregulation caused by temperature rise. These results provide a theoretical reference for future research on the composition and processing method of Angelica dahurica.


Asunto(s)
Angelica , Medicamentos Herbarios Chinos , Cromatografía Liquida , Angelica/química , Espectrometría de Masas en Tándem , Medicamentos Herbarios Chinos/química , Desecación
7.
J Pharm Biomed Anal ; 227: 115277, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36736110

RESUMEN

The quality of traditional Chinese medicine (TCM) guarantees its clinical efficacy. Although advanced analytical techniques and methods can accurately determine the content of chemical components in TCM, it is difficult to accurately determine its clinical efficacy. In addition, the current analytical methods and technologies are complex and have difficulty meeting the requirements of a rapid, accurate and convenient determination of TCM quality. In this study, we first propose the concept of "indistinct" evaluation of the quality of TCM, that is, combining biological potency with character evaluation, quantifying the character evaluation, and preparing the safflower quality grade evaluation card based on the character analysis, which provides research ideas and methods for the rapid and accurate evaluation of the quality of TCM. We determined the biological potency of different batches of safflower based on the in vitro antiplatelet aggregation model and divided the safflower samples into two grades based on the biological potency. We further collected the color information of different grades of safflower samples, quantified the color information of different grades of safflower, drew a quality grade evaluation card for the rapid judgment of safflower quality grade and verified its accuracy by pharmacodynamic evaluation. To further analyze the differences in the material basis of different grades of safflower, the LC-MS method was used to simultaneously determine the contents of 19 chemical components, such as myricetin, in different grades of safflower samples to analyze the differences in the material basis of different grades of safflower. The result shows that the different grades of safflower exhibited significant differences in color. The pharmacodynamic results show that the quality evaluation card prepared based on color information can accurately evaluate quality, and the effect of first-class safflower is significantly better than that of second-class safflower. The chemical analysis results of different grades of safflower show that there are also significant differences between them, among which hypericin, 6-hydroxyapin-6-O-glucose-7-O-glucuronide, 6-hydroxykaempferol-3,6-O-diglucoside-7-O-glucuronic acid glycoside, 6-hydroxykaempferol-3,6,7-tri-O-glucoside and hydroxysafflower yellow A exhibit significant differences, which may be the main differentiating components of different grades of safflower. This study preliminarily confirmed that the "indistinct" evaluation of the quality of TCM based on character analysis is accurate and scientific, and the quality evaluation card prepared can accurately judge the quality of TCM, providing a reference for the rapid application of TCM character evaluation.


Asunto(s)
Carthamus tinctorius , Medicamentos Herbarios Chinos , Medicina Tradicional China , Carthamus tinctorius/química , Medicina de Precisión , Medicamentos Herbarios Chinos/química , Cromatografía Liquida
8.
Phytomedicine ; 108: 154463, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36347177

RESUMEN

BACKGROUND: Cardiovascular disease is one of the most concerning chronic diseases in the world. Many studies have shown that platelet overactivation is a very important factor in the occurrence and development of cardiovascular diseases. At present, the widely used antiplatelet drugs have some defects, such as drug resistance and adverse reactions. PURPOSE: The purpose of this article is to summarize the main mechanisms and pathways of platelet activation, the main targets of antiplatelet aggregation, and the antiplatelet aggregation components of natural drugs and their mechanisms of action to provide new research ideas for the development and application of antiplatelet drugs. STUDY DESIGN AND METHODS: In this review, we systematically searched the PubMed, Google Scholar, Web of Science, and CNKI databases and selected studies based on predefined eligibility criteria. We then assessed their quality and extracted data. RESULTS: ADP, AA, THR, AF, collagen, SDF-1α, and Ca2+ can induce platelet aggregation and trigger thrombosis. Natural drugs have a good inhibitory effect on platelet activation. More than 50 kinds of natural drugs and over 120 kinds of chemical compounds, including flavonoids, alkaloids, saponins, terpenoids, coumarins, and organic acids, have significantly inhibited platelet activation activity. The MAPK pathway, cGMP-PKG pathway, cAMP-PKA pathway, PI3K-AKT pathway, PTK pathway, PLC pathway, and AA pathway are the main mechanisms and pathways of platelet activation. CONCLUSION: Natural drugs and their active ingredients have shown good activity and application prospects in anti-platelet aggregation. We hope that this review provides new research ideas for the development and application of antiplatelet drugs.


Asunto(s)
Enfermedades Cardiovasculares , Inhibidores de Agregación Plaquetaria , Humanos , Inhibidores de Agregación Plaquetaria/farmacología , Inhibidores de Agregación Plaquetaria/uso terapéutico , Fosfatidilinositol 3-Quinasas/metabolismo , Activación Plaquetaria , Agregación Plaquetaria , Plaquetas , Enfermedades Cardiovasculares/metabolismo
9.
Front Genet ; 13: 1005896, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36386821

RESUMEN

Background: Lung cancer has the highest mortality rate among cancers worldwide, and non-small cell lung cancer (NSCLC) is the major lethal factor. Saponins in Paris polyphylla smith exhibit antitumor activity against non-small cell lung cancer, but their targets are not fully understood. Methods: In this study, we used differential gene analysis, lasso regression analysis and support vector machine recursive feature elimination (SVM-RFE) to screen potential key genes for NSCLC by using relevant datasets from the GEO database. The accuracy of the signature genes was verified by using ROC curves and gene expression values. Screening of potential active ingredients for the treatment of NSCLC by molecular docking of the reported active ingredients of saponins in Paris polyphylla Smith with the screened signature genes. The activity of the screened components and their effects on key genes expression were further validated by CCK-8, flow cytometry (apoptosis and cycling) and qPCR. Results: 204 differential genes and two key genes (RHEBL1, RNPC3) stood out in the bioinformatics analysis. Overall survival (OS), First-progression survival (FP) and post-progression survival (PPS) analysis revealed that low expression of RHEBL1 and high expression of RNPC3 indicated good prognosis. In addition, Polyphyllin VI(PPVI) and Protodioscin (Prot) effectively inhibited the proliferation of non-small cell lung cancer cell line with IC50 of 4.46 µM ± 0.69 µM and 8.09 µM ± 0.67µM, respectively. The number of apoptotic cells increased significantly with increasing concentrations of PPVI and Prot. Prot induces G1/G0 phase cell cycle arrest and PPVI induces G2/M phase cell cycle arrest. After PPVI and Prot acted on this cell line for 48 h, the expression of RHEBL1 and RNPC3 was found to be consistent with the results of bioinformatics analysis. Conclusion: This study identified two potential key genes (RHEBL1 and RNPC3) in NSCLC. Additionally, PPVI and Prot may act on RHEBL1 and RNPC3 to affect NSCLC. Our findings provide a reference for clinical treatment of NSCLC.

10.
Comput Biol Med ; 149: 106001, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36055159

RESUMEN

Insomnia is a very common disease worldwide. It seriously affects the quality of human life and even endangers health. Traditional Chinese medicine (TCM) has unique advantages in the intervention and treatment of insomnia. However, its underlying mechanism has yet to be elucidated. This study was performed to explore the potential biomarkers and mechanisms of insomnia, and treatment TCM and classical prescriptions. The gene microarray data of insomnia is downloaded and preprocessed. Differentially expressed genes (DEGs) and GO and KEGG enrichment analyses were performed. The protein-protein interaction network (PPI) was constructed. Small molecule drugs for curing insomnia were identified using cMap and CTD databases. We searched the TCM corresponding to small molecule drugs and the classic prescriptions corresponding to TCM by the TCMSP database. We constructed a network of "ingredient-TCM-classic prescriptions". The molecular docking was performed to validate the screening results. We obtained a total of 124 DEGs, including 78 up-regulated genes, 46 down-regulated genes, 10 Hub genes and 3 key modules. A total of 125 significant GO entries and 15 significant KEGG were enriched (P < 0.05). The main biological processes involve neuronal apoptosis, autophagy, cell growth and apoptosis, etc. These signaling pathways may be involved in molecular regulatory mechanisms of insomnia, such as autophagy regulation, Alzheimer's disease, pathways to neurodegenerative diseases and neurotrophic factor signaling pathways. We identified 10 traditional Chinese medicines and 2 classical prescriptions of potential value. In addition, the molecular docking results indicated that small molecule ligands were nicely bound to the Hub gene, and the binding affinity ranged from -7.6 to -9.7 kcal/mol. This study provides a foundation for the clinical treatment of insomnia, explains the molecular mechanisms, and efficiently develops TCM and classical prescriptions.


Asunto(s)
Biología Computacional , Trastornos del Inicio y del Mantenimiento del Sueño , Biomarcadores , Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Factores de Crecimiento Nervioso , Prescripciones , Trastornos del Inicio y del Mantenimiento del Sueño/tratamiento farmacológico , Trastornos del Inicio y del Mantenimiento del Sueño/genética
11.
Biomed Pharmacother ; 153: 113462, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36076573

RESUMEN

Safflower (Carthamus tinctorius L.) is cultivated in various countries for the flavonoid compounds it contains. These flavonoids have been used in many industries as drugs and/or dyes. Over 60 flavonoids have been isolated from safflower. These flavonoids can be divided into two groups: special and common, both of which are active pharmaceutical ingredients efficacious in the treatment of cardiovascular and cerebrovascular diseases. Gene functions have been studied to figure out the biosynthesis of flavonoids in safflower. However, there is no comprehensive summary of the flavonoids in safflower. Research was recognised through systematic searches of ScienceDirect, PubMed, Web of Science, and CNKI databases by searching terms of "Carthamus tinctorius L.", "safflower", "flavonoid", "pharmacology", and "gene". More than 200 research reports were included after eligibility checks. This study summarizes the application of flavonoids in medicine and other industries. Comprehensively collects the chemical structure information of the two groups of flavonoids, and organic acids, alkaloids, spermidine, polyacetylene, and polysaccharides. The mechanism of two groups of flavonoids in treatment of cardiovascular and cerebrovascular diseases was describe in detail, and pharmacological mechanisms of protecting liver, lung and bone, and anti-cancer and anti-inflammatory were also summarised. Besides, the study updated the latest information on the molecular biology of safflower flavonoids. It is found that two groups of flavonoids in safflower have obvious differences in application, chemical structure, pharmacological mechanism, and biosynthetic pathway. It is hoped that this summative research will provide a new insight to flavonoids research in safflower.


Asunto(s)
Alcaloides , Carthamus tinctorius , Alcaloides/metabolismo , Vías Biosintéticas/genética , Carthamus tinctorius/química , Flavonoides/metabolismo
12.
Curr Oncol ; 29(9): 6573-6593, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36135086

RESUMEN

Background: Colon adenocarcinoma (COAD) is the most common subtype of colon cancer, and cuproptosis is a recently newly defined form of cell death that plays an important role in the development of several malignant cancers. However, studies of cuproptosis-related lncRNAs (CRLs) involved in regulating colon adenocarcinoma are limited. The purpose of this study is to develop a new prognostic CRLs signature of colon adenocarcinoma and explore its underlying biological mechanism. Methods: In this study, we downloaded RNA-seq profiles, clinical data and tumor mutational burden (TMB) data from the TCGA database, identified cuproptosis-associated lncRNAs using univariate Cox, lasso regression analysis and multivariate Cox analysis, and constructed a prognostic model with risk score based on these lncRNAs. COAD patients were divided into high- and low-risk subgroups based on the risk score. Cox regression was also used to test whether they were independent prognostic factors. The accuracy of this prognostic model was further validated by receiver operating characteristic curve (ROC), C-index and Nomogram. In addition, the lncRNA/miRNA/mRNA competing endogenous RNA (ceRNA) network and protein−protein interaction (PPI) network were constructed based on the weighted gene co-expression network analysis (WGCNA). Results: We constructed a prognostic model based on 15 cuproptosis-associated lncRNAs. The validation results showed that the risk score of the model (HR = 1.003, 95% CI = 1.001−1.004; p < 0.001) could serve as an independent prognostic factor with accurate and credible predictive power. The risk score had the highest AUC (0.793) among various factors such as risk score, stage, gender and age, also indicating that the model we constructed to predict patient survival was better than other clinical characteristics. Meanwhile, the possible biological mechanisms of colon adenocarcinoma were explored based on the lncRNA/miRNA/mRNA ceRNA network and PPI network constructed by WGCNA. Conclusion: The prognostic model based on 15 cuproptosis-related lncRNAs has accurate and reliable predictive power to effectively predict clinical outcomes in colon adenocarcinoma patients.


Asunto(s)
Adenocarcinoma , Apoptosis , Neoplasias del Colon , MicroARNs , ARN Largo no Codificante , Humanos , Adenocarcinoma/patología , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Inmunidad , MicroARNs/genética , MicroARNs/metabolismo , Pronóstico , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Cobre
13.
Pak J Pharm Sci ; 34(3): 1003-1010, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34602425

RESUMEN

Rhizoma Musa (the Rhizome of Musa basjoo Sied.et Zucc.) is used as a traditional medical herb of Miao nationality in Guizhou province, in China. It has the efficacy of clearing heat and detoxifying, quenching thirst, diuresis, etc. Modern pharmacological studies have shown that it has hypoglycemic, inhibition of α-glucosidase, and anti-inflammatory activity. However, when the rhizomes of Musa basjoo are dug up, the rhizomes are unable regenerate, and the pseudostem and leaf are discarded, which not only pollutes the environment, but also causes a huge waste of herb resources. In this study, a UPLC-ELSD fingerprint analysis with chemometric method was applied for the evaluation of chemical similarity among rhizome, pseudostem and leaf of Musa Basjoo. The results indicated that the combined method could efficiently analyze and compare the chemical similarity among rhizome, pseudostem, and leaf of Musa Basjoo. The proposed method provides the foundation for the resource substitution of the rhizome, pseudostem, and leaf of Musa Basjoo.


Asunto(s)
Musa/química , Extractos Vegetales/química , Hojas de la Planta/química , Rizoma/química , Cromatografía Líquida de Alta Presión , Análisis por Conglomerados , Medicamentos Herbarios Chinos , Dispersión Dinámica de Luz , Extractos Vegetales/análisis , Tallos de la Planta/química , Análisis de Componente Principal
14.
Comb Chem High Throughput Screen ; 24(6): 790-802, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32955000

RESUMEN

AIM AND OBJECTIVE: In ancient China, rice bran was used to treat diabetes and hyperlipidemia. The aim of this paper is to explore the active compounds and underlying mechanism of Rice Bran Petroleum Ether extracts (RBPE) against diabetes using network pharmacology. MATERIALS AND METHODS: Gas chromatography-mass spectrometer analysis was performed to identify the chemical composition in RBPE. Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, Swiss Target Prediction database, BATMAN-TCM, comprehensive database of human genes and gene phenotypes, therapeutic target database, DurgBank and GeneCards database were used to screen targets. The "component-target-disease" interactive network was constructed by Cytoscape software. Gene ontology and pathways related to the targets were analyzed by ClueGO, and core targets were screened by the MCODE, and Autodock vina was used for molecular docking. RESULTS: The compounds with a percentage greater than 1.0% were selected for subsequent analysis. The RBPE contains oleic acid, (E)-9-Octadecenoic acid ethyl ester, and other chemical components that can regulate insulin, mitogen-activated protein kinase 3, epidermal growth factor receptor, mitogen-activated protein kinase 1, and other genes, which were mainly related to Pathways in cancer, Human cytomegalovirus infection and AGE-RAGE signaling pathway in diabetic complications, etc. The affinity of the core compounds and the corresponding protein of the gene targets was good. CONCLUSION: The results of network pharmacology analysis indicate that the RBPE has multiple anti- diabetic ingredients, and RBPE exert anti-diabetic activity through multiple targets and signaling pathways. The present study can provide a scientific basis for further elucidating the mechanism of RBPE against diabetes.


Asunto(s)
Diabetes Mellitus/tratamiento farmacológico , Medicamentos Herbarios Chinos/uso terapéutico , Éteres/química , Hipoglucemiantes/uso terapéutico , Oryza/química , Extractos Vegetales/uso terapéutico , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/aislamiento & purificación , Cromatografía de Gases y Espectrometría de Masas , Humanos , Hipoglucemiantes/química , Hipoglucemiantes/aislamiento & purificación , Medicina Tradicional China , Petróleo , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación
15.
BMC Complement Med Ther ; 20(1): 109, 2020 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-32276586

RESUMEN

BACKGROUND: Ligularia fischeri (Ledeb) Turcz (LFT) is a well-known expectorant and active anti-inflammatory agent in Chinese traditional medicine. LFT's expectorant effect is closely related to its anti-inflammatory effects. This study aimed to evaluate the differential composition and anti-inflammatory mechanisms of the volatile components in LFT from different production areas. METHOD: Headspace solid-phase microextraction-gas chromatography-mass spectrometry analysis of volatile components, as well as chemometric methods, including similarity analysis, hierarchical clustering analysis, and principal component analysis, were performed to identify LFT produced in different areas. The molecular mechanism underlying the anti-inflammatory effects of these components was determined by network pharmacology analysis. RESULTS: We observed significant differences in the chemical constituents and percentage contents in samples with different origins. Eighteen volatile components were identified in four different producing areas, among which the highest content of olefinic components was the main component of the aroma of LFT. The mechanisms of these pharmacological effects involved multiple targets and pathways. Twenty-seven potential target proteins and 65 signaling pathways were screened, and a "component-target-disease" interaction network map was constructed. The volatile components of the LFT function mainly by inhibiting the production of inflammatory factors. CONCLUSION: This study provides a theoretical framework for further development and application of LFT used in traditional Chinese medicine.


Asunto(s)
Antiinflamatorios/farmacología , Ligularia/química , Extractos Vegetales/farmacología , Compuestos Orgánicos Volátiles/farmacología , Antiinflamatorios/química , China , Cromatografía de Gases y Espectrometría de Masas , Estructura Molecular , Extractos Vegetales/química , Raíces de Plantas/química , Mapas de Interacción de Proteínas , Microextracción en Fase Sólida , Compuestos Orgánicos Volátiles/química
16.
J Pharm Biomed Anal ; 186: 113287, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32325402

RESUMEN

Ai pian (AP) is a well-known Miao national herb with resuscitative effects. However, pharmacological and clinical applications of AP are limited because its precise molecular mechanism remains unclear. This study was conducted to evaluate the anti-inflammatory activities of the volatile compounds of AP in in vivo animal models and determine the molecular mechanism underlying the anti-inflammatory effects based on network pharmacology and molecular docking. We performed gas chromatography-mass spectrometric analysis of volatile compounds with chemometric methods, including hierarchical clustering analysis and principal component analysis, to identify AP from different origins. Mouse models of xylene-induced ear edema were used to examine the in vivo anti-inflammatory activities of AP with cotton ball-granulation test. The mechanism of AP was determined by network pharmacology analysis and molecular docking. Significant differences in chemical constituents and percentage contents were observed among different habitats. We found that AP exerted potent anti-inflammatory effect, and that multiple targets and pathways were involved in this effect. These results provided a foundation for further comprehensive development and application of AP from Miao national herb.


Asunto(s)
Antiinflamatorios/farmacología , Medicamentos Herbarios Chinos/farmacología , Edema/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Animales , Antiinflamatorios/aislamiento & purificación , Modelos Animales de Enfermedad , Femenino , Cromatografía de Gases y Espectrometría de Masas , Inflamación/patología , Masculino , Ratones , Simulación del Acoplamiento Molecular
17.
Mol Divers ; 24(1): 21-30, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30796639

RESUMEN

The dried rhizome of Musa basjoo Sieb. et Zucc. is Rhizoma Musae. It has been used to treat diabetes in Miao medicine in China. Lupenone was isolated from Rhizoma Musae and has good anti-diabetic activity. Its mechanism of action is unclear. Diabetes is a chronic low-level systemic inflammatory disease, and lupenone has anti-inflammatory activity, but the underlying mechanism is not fully elucidated. In this study, we aimed to construct the drug-target biologic network and predict the anti-inflammatory mechanism of lupenone. The network-based pharmacologic analysis platform was used to identify the target proteins related to inflammation. Furthermore, the effects of lupenone on acute, subacute and diabetic pancreatic inflammation were evaluated. The "component-target-disease" network was constructed using Cytoscape. Lupenone could regulate transcription factor p65, NF-kappa-B inhibitor alpha, transcription factor AP-1, NF-kappa-B essential modulator, nuclear factor NF-kappa-B p105 subunit, epidermal growth factor receptor, hypoxia-inducible factor 1-alpha and other proteins related to the PI3K-Akt, Toll-like receptor and NF-kappa B signaling pathways. In addition, lupenone significantly decreased acute and subacute inflammation in mice as well as the IL-1ß and IFN-γ levels in the pancreas of diabetic rats. The above results provide strong support for studying the molecular mechanism of lupenone in the treatment of diabetes from the perspective of anti-inflammation.


Asunto(s)
Antiinflamatorios/química , Antiinflamatorios/farmacología , Biología Computacional , Triterpenos/química , Triterpenos/farmacología , Animales , Proteínas Portadoras , Biología Computacional/métodos , Citocinas/metabolismo , Modelos Animales de Enfermedad , Edema/tratamiento farmacológico , Edema/etiología , Mediadores de Inflamación , Masculino , Ratones , Modelos Moleculares , Unión Proteica , Ratas , Relación Estructura-Actividad , Tecnología Farmacéutica
18.
Biomed Pharmacother ; 103: 198-203, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29653365

RESUMEN

There are a large number of new structure compounds with good pharmacological activity in the natural plants, can be applied to the treatment of human diseases. Finding active ingredients from the plants is one of the important ways to develop new drugs. Triterpenes are widespread in plants, and lupenone belongs to lupane type triterpenoids. Lupenone is very common natural ingredient distributed in multi-family plants including Asteraceae, Balanophoraceae, Cactaceae, Iridaceae, Musaceae, Urticaceae, Leguminosae, Bombacaceae, etc., but its distribution has no regular. The consumption of lupenone in vegetarian diet is high in human life. Pharmacological screening of lupenone revealed various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity. Based on these important pharmacological activities, this review provides detailed account of pre-clinical studies conducted to determine the utility of lupenone as a therapeutic and chemopreventive agent for the treatment of various diseases.


Asunto(s)
Triterpenos/uso terapéutico , Animales , Enfermedad , Evaluación Preclínica de Medicamentos , Humanos , Modelos Animales , Triterpenos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA