Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Drug Deliv Rev ; 212: 115386, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38971180

RESUMEN

To maximize therapeutic effects and minimize unwanted effects, the interest in drug targeting to the endoplasmic reticulum (ER) or Golgi apparatus (GA) has been recently growing because two organelles are distributing hubs of cellular building/signaling components (e.g., proteins, lipids, Ca2+) to other organelles and the plasma membrane. Their structural or functional damages induce organelle stress (i.e., ER or GA stress), and their aggravation is strongly related to diseases (e.g., cancers, liver diseases, brain diseases). Many efforts have been developed to image (patho)physiological functions (e.g., oxidative stress, protein/lipid-related processing) and characteristics (e.g., pH, temperature, biothiols, reactive oxygen species) in the target organelles and to deliver drugs for organelle disruption using organelle-targeting moieties. Therefore, this review will overview the structure, (patho)physiological functions/characteristics, and related diseases of the organelles of interest. Future direction on ER or GA targeting will be discussed by understanding current strategies and investigations on targeting, imaging/sensing, and therapeutic systems.

2.
Biomater Sci ; 12(12): 3045-3067, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38712883

RESUMEN

Various strategies at the microscale/nanoscale have been developed to improve oral absorption of therapeutics. Among them, gastrointestinal (GI)-transporter/receptor-mediated nanosized drug delivery systems (NDDSs) have drawn attention due to their many benefits, such as improved water solubility, improved chemical/physical stability, improved oral absorption, and improved targetability of their payloads. Their therapeutic potential in disease animal models (e.g., solid tumors, virus-infected lungs, metastasis, diabetes, and so on) has been investigated, and could be expanded to disease targeting after systemic/lymphatic circulation, although the detailed paths and mechanisms of endocytosis, endosomal escape, intracellular trafficking, and exocytosis through the epithelial cell lining in the GI tract are still unclear. Thus, this review summarizes and discusses potential GI transporters/receptors, their absorption and distribution, in vivo studies, and potential sequential targeting (e.g., oral absorption and disease targeting in organs/tissues).


Asunto(s)
Nanopartículas , Humanos , Animales , Administración Oral , Nanopartículas/química , Nanopartículas/administración & dosificación , Sistemas de Liberación de Medicamentos , Sistema de Administración de Fármacos con Nanopartículas/química
3.
Macromol Biosci ; 24(7): e2300590, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38488862

RESUMEN

Nanoparticle (NP)-based drug delivery systems are conceived to solve poor water-solubility and chemical/physical instability, and their purpose expanded to target specific sites for maximizing therapeutic effects and minimizing unwanted events of payloads. Targeted sites are also narrowed from organs/tissues and cells to cytosol/organelles. Beyond specific site targeting, the particular release of payloads at the target sites is growing in importance. This review overviews various issues and their general strategies during multiple steps, from the preparation of drug-loaded NPs to their drug release at the target cytosol/organelles. In particular, this review focuses on current strategies for "first" delivery and "later" release of drugs to the cytosol or organelles of interest using specific stimuli in the target sites. Recognizing or distinguishing the presence/absence of stimuli or their differences in concentration/level/activity in one place from those in another is applied to stimuli-triggered release via bond cleavage or nanostructural transition. In addition, future directions on understanding the intracellular balance of stimuli and their counter-stimuli are demonstrated to synergize the therapeutic effects of payloads released from stimuli-sensitive NPs.


Asunto(s)
Citosol , Nanopartículas , Humanos , Citosol/metabolismo , Nanopartículas/química , Orgánulos/metabolismo , Liberación de Fármacos , Sistemas de Liberación de Medicamentos/métodos , Animales , Sistema de Administración de Fármacos con Nanopartículas/química , Portadores de Fármacos/química
4.
Carbohydr Polym ; 328: 121734, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38220328

RESUMEN

Cell therapy using chondrocytes has shown promise for cartilage regeneration, but maintaining functional characteristics during in vitro culture and ensuring survival after transplantation are challenges. Three-dimensional (3D) cell culture methods, such as spheroid culture, and hydrogels can improve cell survival and functionality. In this study, a new method of culturing spheroids using hyaluronic acid (HA) microparticles was developed. The spheroids mixed with HA microparticles effectively maintained the functional characteristics of chondrocytes during in vitro culture, resulting in improved cell survival and successful cartilage formation in vivo following transplantation. This new method has the potential to improve cell therapy production for cartilage regeneration.


Asunto(s)
Cartílago Articular , Ácido Hialurónico , Ácido Hialurónico/farmacología , Ingeniería de Tejidos/métodos , Cartílago , Condrocitos , Regeneración , Hidrogeles/farmacología
5.
J Korean Med Sci ; 38(17): e135, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37128878

RESUMEN

BACKGROUND: In this study, we prepared and evaluated an injectable poloxamer (P407) hydrogel formulation for intratympanic (IT) delivery of dexamethasone (DEX). METHODS: DEX-loaded P407 hydrogels were characterized in terms of thermogelation, drug loading capacities, particle size, and drug release. The in vivo toxicity and drug absorption of the DEX-loaded P407 formulation after IT injection were evaluated using an animal model by performing histopathological analysis and drug concentration measurements. RESULTS: The P407 hydrogel effectively solubilized hydrophobic DEX and demonstrated a sustained release compared to the hydrophilic DEX formulation. The in vivo study showed that the hydrogel formulation delivered considerable drug concentrations to the inner ear and displayed a favorable safety profile without apparent cytotoxicity or inflammation. CONCLUSION: P407 hydrogel can be useful as an injectable inner ear delivery formulation for hydrophobic drugs due to their biocompatibility, drug-solubilizing capacity, thermogelation, and controlled release.


Asunto(s)
Hidrogeles , Poloxámero , Animales , Poloxámero/química , Hidrogeles/química , Liberación de Fármacos , Dexametasona
6.
Biomater Sci ; 11(1): 298-306, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36448579

RESUMEN

In an immunosuppressive tumor microenvironment, tumor-associated macrophages (TAMs) are the most abundant cells displaying pro-tumorigenic M2-like phenotypes, encouraging tumor growth and influencing the development of resistance against conventional therapies. TAMs are highly malleable. They can be repolarized into tumoricidal M1-like cells. In this study, we report the synthesis of novel co-operative immuno-photodynamic nanoparticles involving TAM self-targeting acrylic acid grafted mannan (a polysaccharide) conjugated with the chlorin e6 (Ce6) photosensitizer and then loaded with resiquimod (R848), a toll-like receptor (TLR7/8) agonist. The mannan conjugated Ce6 loaded with R848 (MCR) as bioconjugate nanoparticles demonstrated selective targeting of anti-inflammatory M2-like cells. Using photodynamic therapy they were repolarized to pro-inflammatory M1-like cells with combined effects of reactive oxygen species (ROS)-triggered intracellular signaling and a small-molecule immunostimulant. The MCR also demonstrated a TAM-directed adaptive immune response, inhibited tumor growth, and prevented metastasis. Our results indicate that these MCR nanoparticles can effectively target TAMs and modulate them for cancer immunotherapy.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Mananos , Macrófagos Asociados a Tumores , Adyuvantes Inmunológicos/farmacología , Adyuvantes Inmunológicos/uso terapéutico , Fotoquimioterapia/métodos , Neoplasias/tratamiento farmacológico , Línea Celular Tumoral , Microambiente Tumoral
7.
ACS Omega ; 7(22): 18471-18480, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35694497

RESUMEN

Cell culture technology has evolved into three-dimensional (3D) artificial tissue models for better reproduction of human native tissues. However, there are some unresolved limitations that arise due to the adhesive properties of cells. In this study, we developed a hexanoyl glycol chitosan (HGC) as a non-cell adhesive polymer for scaffold-based and -free 3D culture. The uniform cell distribution in a porous scaffold was well maintained during the long culutre period on the HGC-coated substrate by preventing ectopic adhesion and migration of cells on the substrate. In addition, when culturing many spheroids in one dish, supplementation of the culture medium with HGC prevented the aggregation of spheroids and maintained the shape and size of spheroids for a long culture duration. Collectively, the use of HGC in 3D culture systems is expected to contribute greatly to creating excellent regenerative therapeutics and screening models of bioproducts.

8.
Carbohydr Polym ; 278: 118969, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34973784

RESUMEN

We prepared a new injectable thermogel to enhance the efficiency of inner ear delivery of dexamethasone (DEX). Hexanoyl glycol chitosan (HGC) was synthesized and evaluated as an amphiphilic thermogel (Tgel ~ 32 °C) for use as a solubilizing agent as well as an injectable carrier for intratympanic delivery of the hydrophilic and hydrophobic forms of DEX. Various thermogel formulations with different drug types and concentrations were prepared, and their physicochemical and thermogelling properties were characterized by 1H NMR, ATR-FTIR, and rheometer. They exhibited versatile release kinetics from several hours to more than 2 weeks, depending on drug type and concentration. Our formulations further showed good residual stability for more than 21 days without any cytotoxicity or inflammation in the middle and inner ear and could deliver a considerably high drug concentration into the inner ear. Therefore, HGC thermogel has great potential as an effective and safe formulation for inner ear drug delivery.


Asunto(s)
Quitosano/química , Dexametasona/farmacología , Sistemas de Liberación de Medicamentos , Oído Interno/efectos de los fármacos , Temperatura , Animales , Quitosano/administración & dosificación , Quitosano/síntesis química , Dexametasona/administración & dosificación , Dexametasona/química , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/síntesis química , Portadores de Fármacos/química , Composición de Medicamentos , Geles/administración & dosificación , Geles/síntesis química , Geles/química , Cobayas , Masculino , Estructura Molecular
9.
Biomaterials ; 280: 121307, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34894582

RESUMEN

Due to increasing safety and intracellular delivery concerns about hydrophilic polymers in amphiphilic polymer-based nanoparticles (NPs), this study investigates small hydrophilic molecule-stabilized NPs for effective intracellular delivery with multiorganelle targetability and dual responsiveness to acidic pH/glutathione (GSH). In the construction of small hydrophilic molecule-stabilized NP (MSPCL-NP), the A-B-A-type amphiphilic polymer (MSPCL-P) is composed of two short hydrophilic carboxylate-capped disulfide derivatives (A) that replace hydrophilic polymers and assist in providing colloidal stability and preventing antibody (e.g., at least anti-PEG antibody)-mediated specific interactions and complement activation in the plasma and a hydrophobic multiple disulfide-containing poly(ε-caprolactone) block (B) that carries hydrophobic drugs. The carboxylates on the surface of MSPCL-NP target the acidic extratumoral/endolysosomal milieu by sensing and buffering acidic pH values, and the hydrophobic carboxylic acids improve adsorptive endocytosis and effective endosomal escape. Multiple disulfide linkages selectively target cytosolic GSH, resulting in rapid drug release from the destroyed MSPCL-NP via the cleavage of disulfide bonds in MSPCL-P. Doxorubicin (DOX)-loaded NP (DOX@MSPCL-NP) exerts strong effects on killing cells in vitro and inhibits tumor growth in HCT116 xenograft tumor-bearing mice. In conclusion, the multifunctionality and multispatial targetability of MSPCL-NP might effectively overcome various sequential drug delivery hurdles, ranging from blood circulation to drug release. Furthermore, the introduction of small hydrophilic molecules represents a potential strategy to make self-assembled NPs without the use of hydrophilic polymers.


Asunto(s)
Nanopartículas , Polímeros , Animales , Ácidos Carboxílicos , Disulfuros , Doxorrubicina/química , Doxorrubicina/farmacología , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Nanopartículas/química , Polímeros/química
11.
Int J Biol Macromol ; 187: 955-963, 2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34343581

RESUMEN

Three-dimensional (3D) culture systems that provide a more physiologically similar environment than conventional two-dimensional (2D) cultures have been extensively developed. Previously we have provided a facile method for the formation of 3D spheroids using non-adhesive N-hexanoyl glycol chitosan (HGC) hydrogel-coated dishes, but with limitations such as low gel stability and weak mechanical properties. In this study, chemically crosslinked hydrogels were prepared by photocrosslinking of methacrylated HGCs (M-HGCs), and their spheroid-forming abilities were evaluated for long-term 3D cell cultures. The M-HGC hydrogels demonstrated not only enhanced gel stability, but also good spheroid-forming abilities. Furthermore, the M-HGC-coated dishes were effective in generating spheroids of larger size and higher cell density depending on the crosslinking density of the M-HGCs. These results indicate that our hydrogel-coated dish system could be widely applied as an effective technique to produce cell spheroids with customized sizes and densities that are essential for tissue engineering and drug screening.


Asunto(s)
Quitosano/química , Fibroblastos/fisiología , Técnicas de Cultivo de Célula , Células Cultivadas , Quitosano/análogos & derivados , Quitosano/efectos de la radiación , Humanos , Hidrogeles , Procesos Fotoquímicos , Esferoides Celulares , Propiedades de Superficie , Temperatura , Rayos Ultravioleta
12.
Int J Biol Macromol ; 185: 87-97, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34144066

RESUMEN

The current 2D culture model systems developed for drug screening are not sufficient to reflect the characteristics of in vivo solid tumors. Therefore, more effective in vitro tumor model systems must be developed for translational studies on therapeutic drug screening and testing. Herein, we report a new ultra-low adhesion (ULA) hydrogel for generating 3D cancer cell spheroids as tumor models in vitro. N-octanoyl glycol chitosan (OGC) was synthesized and coated onto the surface of a typical cell culture dish. Cell spheroids were effectively formed on the OGC-coated surface, and phenotypes of the tumor cells were well maintained during culture. More importantly, U373-MG cells cultured on OGC-coated plates were more resistant to doxorubicin than cells cultured on typical plates. Our OGC-based ULA system may offer a convenient method for 3D cell culture to provide enhanced performance in cancer research, drug screening and toxicology.


Asunto(s)
1-Octanol/química , Neoplasias Encefálicas/tratamiento farmacológico , Quitosano/química , Glioblastoma/tratamiento farmacológico , Esferoides Celulares/citología , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/farmacología , Evaluación Preclínica de Medicamentos , Humanos , Hidrogeles , Esferoides Celulares/química , Esferoides Celulares/efectos de los fármacos
13.
Int J Mol Sci ; 22(5)2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33801273

RESUMEN

The process of evaluating the efficacy and toxicity of drugs is important in the production of new drugs to treat diseases. Testing in humans is the most accurate method, but there are technical and ethical limitations. To overcome these limitations, various models have been developed in which responses to various external stimuli can be observed to help guide future trials. In particular, three-dimensional (3D) cell culture has a great advantage in simulating the physical and biological functions of tissues in the human body. This article reviews the biomaterials currently used to improve cellular functions in 3D culture and the contributions of 3D culture to cancer research, stem cell culture and drug and toxicity screening.


Asunto(s)
Antineoplásicos/farmacología , Materiales Biocompatibles/química , Investigación Biomédica , Técnicas de Cultivo de Célula/métodos , Desarrollo de Medicamentos , Neoplasias/tratamiento farmacológico , Células Madre/efectos de los fármacos , Animales , Humanos , Neoplasias/patología , Células Madre/citología
14.
Carbohydr Polym ; 264: 117992, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33910730

RESUMEN

Biofunctional polymers have been widely used to enhance the proliferation and functionality of stem cells. Here, we report the development of a new biofunctional polymer, octanoyl glycol chitosan (OGC), and demonstrate its effects on the cell cycle and stem cell function using tonsil-derived mesenchymal stem cells (TMSCs). OGC treatment (100 µg/mL) significantly increased the proliferation of TMSCs, which could be attributed to cyclin D1 up-regulation in the G1 phase of the cell cycle. Additionally, OGC enhanced the ability of TMSCs to differentiate into adipocytes, chondrocytes, and osteoblasts. Taken together, this new biofunctional polymer, OGC, can promote stemness and osteogenesis, as well as induce stem cell proliferation by enhancing the intracellular metabolic rate and regulating the cell cycle. Thus, in the future, OGC could be a potential therapeutic additive for improving stem cell function.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Quitosano/farmacología , Células Madre Mesenquimatosas/metabolismo , Tonsila Palatina/citología , Ciclo Celular/efectos de los fármacos , Células Cultivadas , Quitosano/química , Ciclina D1/metabolismo , Humanos , Osteogénesis/efectos de los fármacos , Consumo de Oxígeno , Tonsila Palatina/metabolismo , Polímeros/química , Polímeros/farmacología , Ingeniería de Tejidos/métodos , Cicatrización de Heridas/efectos de los fármacos
15.
Carbohydr Polym ; 260: 117808, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33712154

RESUMEN

In the present study, a novel synthetic tissue adhesive material capable of sealing wounds without the use of any crosslinking agent was developed by conjugating thermosensitive hexanoyl glycol chitosan (HGC) with gallic acid (GA). The degree of N-gallylation was manipulated to prepare GA-HGCs with different GA contents. GA-HGCs demonstrated thermosensitive sol-gel transition behavior and formed irreversible hydrogels upon natural oxidation of the pyrogallol moieties in GA, possibly leading to GA-HGC crosslinks through intra/intermolecular hydrogen bonding and chemical bonds. The GA-HGC hydrogels exhibited self-healing properties, high compressive strength, strong tissue adhesive strength and biodegradability that were adjustable according to the GA content. GA-HGCs also presented excellent biocompatibility and wound healing effects. The results of in vivo wound healing efficacy studies on GA-HGC hydrogels indicated that they significantly promote wound closure and tissue regeneration by upregulating growth factors and recruiting fibroblasts compared to the untreated control group.


Asunto(s)
Materiales Biocompatibles/química , Quitosano/química , Ácido Gálico/química , Animales , Materiales Biocompatibles/farmacología , Fuerza Compresiva , Hidrogeles/química , Hidrogeles/farmacología , Reología , Porcinos , Adhesivos Tisulares/química , Cicatrización de Heridas/efectos de los fármacos
16.
ACS Appl Mater Interfaces ; 13(4): 4844-4852, 2021 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-33486952

RESUMEN

The combination of photothermal therapy (PTT) and toll-like receptor (TLR)-mediated immunotherapy can elicit antitumor immunity and modulate the immunosuppressive tumor microenvironment (TME). Unlike other TLRs, TLR-5 is a promising target for immune activation, as its expression is well-maintained even during immunosenescence. Here, we developed a unique tumor microenvironment-regulating immunosenescence-independent nanostimulant consisting of TLR-5 adjuvant Vibrio vulnificus flagellin B (FlaB) conjugated onto the surface to an IR 780-loaded hyaluronic acid-stearylamine (HIF) micelles. These HIF micelles induced immune-mediated cell death via PTT when irradiated with a near-infrared laser. In comparison with PTT alone, the combination of in situ-generated tumor-associated antigens produced during PTT and the immune adjuvant FlaB demonstrated enhanced vaccine-like properties and modulated the TME by suppressing immune-suppressive regulatory cells (Tregs) and increasing the fraction of CD103+ migratory dendritic cells, which are responsible for trafficking tumor antigens to draining lymph nodes (DLNs). This combinatorial strategy (i.e., applying a TLR-5 adjuvant targeted to immunosenescence-independent TLR-5 and the in situ photothermal generation of tumor-associated antigens) is a robust system for next-generation immunotherapy and could even be applied in elderly patients, thus broadening the clinical scope of immunotherapy strategies.


Asunto(s)
Adyuvantes Inmunológicos/uso terapéutico , Flagelina/uso terapéutico , Inmunoterapia , Nanopartículas/uso terapéutico , Neoplasias/terapia , Terapia Fototérmica , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/farmacología , Animales , Línea Celular Tumoral , Femenino , Flagelina/administración & dosificación , Flagelina/inmunología , Células HEK293 , Humanos , Inmunosenescencia/efectos de los fármacos , Inmunosenescencia/efectos de la radiación , Inmunoterapia/métodos , Rayos Infrarrojos/uso terapéutico , Ratones Endogámicos C57BL , Nanopartículas/administración & dosificación , Neoplasias/inmunología , Neoplasias/patología , Terapia Fototérmica/métodos , Receptor Toll-Like 5/antagonistas & inhibidores , Receptor Toll-Like 5/inmunología , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/efectos de la radiación , Vibrio vulnificus/inmunología
17.
Macromol Biosci ; 20(8): e2000118, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32567108

RESUMEN

Photo/pH dual-responsive amphiphilic diblock copolymers with alkyne functionalized pendant o-nitrobenzyl ester group are synthesized using poly(ethylene glycol) as a macroinitiator. The pendant alkynes are functionalized as aldehyde groups by the azide-alkyne Huisgen cycloaddition. The anticancer drug doxorubicin (DOX) molecules are then covalently conjugated through acid-sensitive Schiff-base linkage. The resultant prodrug copolymers self-assemble into nanomicelles in aqueous solution. The prodrug nanomicelles have a well-defined morphology with an average size of 20-40 nm. The dual-stimuli are applied individually or simultaneously to study the release behavior of DOX. Under UV light irradiation, nanomicelles are disassembled due to the ONB ester photocleavage. The light-controlled DOX release behavior is demonstrated using fluorescence spectroscopy. Due to the pH-sensitive imine linkage the DOX molecules are released rapidly from the nanomicelles at the acidic pH of 5.0, whereas only minimal amount of DOX molecules is released at the pH of 7.4. The DOX release rate is tunable by applying the dual-stimuli simultaneously. In vitro studies against colon cancer cells demonstrate that the nanomicelles show the efficient cellular uptake and the intracellular DOX release, indicating that the newly designed copolymers with dual-stimuli-response have significant potential applications as a smart nanomedicine against cancer.


Asunto(s)
Doxorrubicina/farmacología , Luz , Micelas , Nanopartículas/química , Cemento de Policarboxilato/química , Polímeros/química , Supervivencia Celular/efectos de los fármacos , Preparaciones de Acción Retardada/farmacología , Liberación de Fármacos , Endocitosis/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno , Concentración 50 Inhibidora , Células MCF-7 , Nanopartículas/ultraestructura , Polímeros/síntesis química , Profármacos/farmacología , Espectroscopía de Protones por Resonancia Magnética , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier
18.
Carbohydr Polym ; 244: 116432, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32536405

RESUMEN

Thermogels that undergo temperature-dependent sol-gel transition have recently attracted attention as a promising biomaterial for injectable tissue engineering. However, conventional thermogels usually suffer from poor physical properties and low cell binding affinity, limiting their practical applications. Here, a simple approach for developing a new thermogel with enhanced physical properties and cell binding affinity is proposed. This thermogel (AcHA/HGC) was obtained by simple blending of a new class of polysaccharide-based thermogel, N-hexanoyl glycol chitosan (HGC), with a polysaccharide possessing good cell binding affinity, acetylated hyaluronic acid (AcHA). Gelation of AcHA/HGC was initially triggered by the thermosensitive response of HGC and gradually intensified by additional physical crosslinking mechanisms between HGC and AcHA, resulting in thermo-irreversible gelation. Compared to the thermos-reversible HGC hydrogel, the thermo-irreversible AcHA/HGC hydrogel exhibited enhanced physical stability, mechanical properties, cell binding affinity, and tissue compatibility. These results suggest that our thermo-irreversible hydrogel is a promising biomaterial for injectable tissue engineering.


Asunto(s)
Materiales Biocompatibles , Quitosano , Ácido Hialurónico , Hidrogeles , Ingeniería de Tejidos , Animales , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/química , Materiales Biocompatibles/uso terapéutico , Células Cultivadas , Quitosano/química , Quitosano/uso terapéutico , Condrocitos , Ácido Hialurónico/química , Ácido Hialurónico/uso terapéutico , Hidrogeles/síntesis química , Hidrogeles/química , Hidrogeles/uso terapéutico , Masculino , Ratones , Ratones Endogámicos ICR
19.
ACS Appl Mater Interfaces ; 12(25): 28004-28013, 2020 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-32501678

RESUMEN

Tumor microenvironment (TME)-responsive nanocarrier systems that keep the photosensitizer (PS) inactive during systemic circulation and then efficiently release or activate the PS in response to unique TME conditions have attracted much attention. Herein, we report novel TME-responsive, self-quenched polysaccharide nanoparticles (NPs) with a reactive oxygen species (ROS)-sensitive cascade. The PS, pheophorbide A (PhA), was conjugated to a water-soluble glycol chitosan (GC) through an ROS-sensitive thioketal (TK) linker. The amphiphilic GC-TK-PhA conjugates could arrange themselves into NPs and remain photoinactive due to their self-quenching effects. Upon reaching the ROS-rich hypoxic core of the tumor tissue, the NPs release the PS in a photoactive form by efficient, ROS-sensitive TK bond cleavage, thus generating potent phototoxic effects. Following near-infrared irradiation, the increase in locoregional ROS levels further accelerates the release and activation of PS. These cascade reactions caused a significant reduction in the tumor volume, demonstrating good antitumor potential.


Asunto(s)
Clorofila/análogos & derivados , Nanopartículas/química , Fotoquimioterapia/métodos , Polisacáridos/química , Especies Reactivas de Oxígeno/metabolismo , Quitosano/química , Clorofila/química
20.
PLoS One ; 15(5): e0232899, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32392240

RESUMEN

Various nanopatterning techniques have been developed to improve cell proliferation and differentiation efficiency. As we previously reported, nanopillars and pores are able to sustain human pluripotent stem cells and differentiate pancreatic cells. From this, the nanoscale patterns would be effective environment for the co-culturing of epithelial and mesenchymal cell types. Interestingly, the nanopatterning selectively reduced the proliferative rate of mesenchymal cells while increasing the expression of adhesion protein in epithelial type cells. Additionally, co-cultured cells on the nanopatterning were not negatively affected in terms of cell function metabolic ability or cell survival. This is in contrast to conventional co-culturing methods such as ultraviolet or chemical treatments. The nanopatterning appears to be an effective environment for mesenchymal co-cultures with typically low proliferative rates cells such as astrocytes, neurons, melanocytes, and fibroblasts without using potentially damaging treatments.


Asunto(s)
Técnicas de Cocultivo/instrumentación , Células Epiteliales , Células Madre Mesenquimatosas , Nanoestructuras , Animales , Adhesión Celular , Proliferación Celular , Supervivencia Celular , Células Epiteliales/citología , Células Epiteliales/fisiología , Fibroblastos/citología , Fibroblastos/fisiología , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/fisiología , Ratones , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...