Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 16(11): 6717-6723, 2016 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-27347747

RESUMEN

Vapor-liquid-solid nanowire growth below the bulk metal-semiconductor eutectic temperature is known for several systems; however, the fundamental processes that govern this behavior are poorly understood. Here, we show that hydrogen atoms adsorbed on the Ge nanowire sidewall enable AuGe catalyst supercooling and control Au transport. Our approach combines in situ infrared spectroscopy to directly and quantitatively determine hydrogen atom coverage with a "regrowth" step that allows catalyst phase to be determined with ex situ electron microscopy. Maintenance of a supercooled catalyst with only hydrogen radical delivery confirms the centrality of sidewall chemistry. This work underscores the importance of the nanowire sidewall and its chemistry on catalyst state, identifies new methods to regulate catalyst composition, and provides synthetic strategies for subeutectic growth in other nanowire systems.

2.
Lab Chip ; 16(11): 2126-34, 2016 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-27171977

RESUMEN

Existing nanowire electrical characterization tools not only are expensive and require sophisticated facilities, but are far too slow to enable statistical characterization of highly variable samples. They are also generally not compatible with further sorting and processing of nanowires. Here, we demonstrate a high-throughput, solution-based electro-orientation-spectroscopy (EOS) method, which is capable of automated electrical characterization of individual nanowires by direct optical visualization of their alignment behavior under spatially uniform electric fields of different frequencies. We demonstrate that EOS can quantitatively characterize the electrical conductivities of nanowires over a 6-order-of-magnitude range (10(-5) to 10 S m(-1), corresponding to typical carrier densities of 10(10)-10(16) cm(-3)), with different fluids used to suspend the nanowires. By implementing EOS in a simple microfluidic device, continuous electrical characterization is achieved, and the sorting of nanowires is demonstrated as a proof-of-concept. With measurement speeds two orders of magnitude faster than direct-contact methods, the automated EOS instrument enables for the first time the statistical characterization of highly variable 1D nanomaterials.

3.
Nano Lett ; 15(10): 6939-45, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26383971

RESUMEN

The vapor-liquid-solid (VLS) mechanism enables the bottom-up, or additive, growth of semiconductor nanowires. Here, we demonstrate a reverse process, whereby catalyst atoms are selectively removed from the eutectic catalyst droplet. This process, which is driven by the dicarbonyl precursor 2,3-butanedione, results in axial nanowire etching. Experiments as a function of substrate temperature, etchant flow rate, and nanowire diameter support a solid-liquid-vapor (SLV) mechanism. An etch model with reaction at the liquid-vapor interface as the rate-limiting step is consistent with our experiments. These results identify a new mechanism to in situ tune the concentration of semiconductor atoms in the catalyst droplet.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...