Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Diagnostics (Basel) ; 14(14)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39061647

RESUMEN

This project employs artificial intelligence, including machine learning and deep learning, to assess COVID-19 readmission risk in Malaysia. It offers tools to mitigate healthcare resource strain and enhance patient outcomes. This study outlines a methodology for classifying COVID-19 readmissions. It starts with dataset description and pre-processing, while the data balancing was computed through Random Oversampling, Borderline SMOTE, and Adaptive Synthetic Sampling. Nine machine learning and ten deep learning techniques are applied, with five-fold cross-validation for evaluation. Optuna is used for hyperparameter selection, while the consistency in training hyperparameters is maintained. Evaluation metrics encompass accuracy, AUC, and training/inference times. Results were based on stratified five-fold cross-validation and different data-balancing methods. Notably, CatBoost consistently excelled in accuracy and AUC across all tables. Using ROS, CatBoost achieved the highest accuracy (0.9882 ± 0.0020) with an AUC of 1.0000 ± 0.0000. CatBoost maintained its superiority in BSMOTE and ADASYN as well. Deep learning approaches performed well, with SAINT leading in ROS and TabNet leading in BSMOTE and ADASYN. Decision Tree ensembles like Random Forest and XGBoost consistently showed strong performance.

2.
Sensors (Basel) ; 24(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38931720

RESUMEN

This paper addresses the critical need for advanced real-time vehicle detection methodologies in Vehicle Intelligence Systems (VIS), especially in the context of using Unmanned Aerial Vehicles (UAVs) for data acquisition in severe weather conditions, such as heavy snowfall typical of the Nordic region. Traditional vehicle detection techniques, which often rely on custom-engineered features and deterministic algorithms, fall short in adapting to diverse environmental challenges, leading to a demand for more precise and sophisticated methods. The limitations of current architectures, particularly when deployed in real-time on edge devices with restricted computational capabilities, are highlighted as significant hurdles in the development of efficient vehicle detection systems. To bridge this gap, our research focuses on the formulation of an innovative approach that combines the fractional B-spline wavelet transform with a tailored U-Net architecture, operational on a Raspberry Pi 4. This method aims to enhance vehicle detection and localization by leveraging the unique attributes of the NVD dataset, which comprises drone-captured imagery under the harsh winter conditions of northern Sweden. The dataset, featuring 8450 annotated frames with 26,313 vehicles, serves as the foundation for evaluating the proposed technique. The comparative analysis of the proposed method against state-of-the-art detectors, such as YOLO and Faster RCNN, in both accuracy and efficiency on constrained devices, emphasizes the capability of our method to balance the trade-off between speed and accuracy, thereby broadening its utility across various domains.

3.
Quant Imaging Med Surg ; 13(12): 7879-7892, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38106293

RESUMEN

Background: When an ischemic stroke happens, it triggers a complex signalling cascade that may eventually lead to neuronal cell death if no reperfusion. Recently, the relayed nuclear Overhauser enhancement effect at -1.6 ppm [NOE(-1.6 ppm)] has been postulated may allow for a more in-depth analysis of the ischemic injury. This study assessed the potential utility of NOE(-1.6 ppm) in an ischemic stroke model. Methods: Diffusion-weighted imaging, perfusion-weighted imaging, and chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) data were acquired from five rats that underwent scans at 9.4 T after middle cerebral artery occlusion. Results: The apparent diffusion coefficient (ADC), cerebral blood flow (CBF), and apparent exchange-dependent relaxations (AREX) at 3.5 ppm and NOE(-1.6 ppm) were quantified. AREX(3.5 ppm) and NOE(-1.6 ppm) were found to be hypointense and exhibited different signal patterns within the ischemic tissue. The NOE(-1.6 ppm) deficit areas were equal to or larger than the ADC deficit areas, but smaller than the AREX(3.5 ppm) deficit areas. This suggested that NOE(-1.6 ppm) might further delineate the acidotic tissue estimated using AREX(3.5 ppm). Since NOE(-1.6 ppm) is closely related to membrane phospholipids, NOE(-1.6 ppm) potentially highlighted at-risk tissue affected by lipid peroxidation and membrane damage. Altogether, the ADC/NOE(-1.6 ppm)/AREX(3.5 ppm)/CBF mismatches revealed four zones of increasing sizes within the ischemic tissue, potentially reflecting different pathophysiological information. Conclusions: Using CEST coupled with ADC and CBF, the ischemic tissue may thus potentially be separated into four zones to better understand the pathophysiology after stroke and improve ischemic tissue fate definition. Further verification of the potential utility of NOE(-1.6 ppm) may therefore lead to a more precise diagnosis.

4.
Sci Rep ; 13(1): 20518, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37993544

RESUMEN

Debates persist regarding the impact of Stain Normalization (SN) on recent breast cancer histopathological studies. While some studies propose no influence on classification outcomes, others argue for improvement. This study aims to assess the efficacy of SN in breast cancer histopathological classification, specifically focusing on Invasive Ductal Carcinoma (IDC) grading using Convolutional Neural Networks (CNNs). The null hypothesis asserts that SN has no effect on the accuracy of CNN-based IDC grading, while the alternative hypothesis suggests the contrary. We evaluated six SN techniques, with five templates selected as target images for the conventional SN techniques. We also utilized seven ImageNet pre-trained CNNs for IDC grading. The performance of models trained with and without SN was compared to discern the influence of SN on classification outcomes. The analysis unveiled a p-value of 0.11, indicating no statistically significant difference in Balanced Accuracy Scores between models trained with StainGAN-normalized images, achieving a score of 0.9196 (the best-performing SN technique), and models trained with non-normalized images, which scored 0.9308. As a result, we did not reject the null hypothesis, indicating that we found no evidence to support a significant discrepancy in effectiveness between stain-normalized and non-normalized datasets for IDC grading tasks. This study demonstrates that SN has a limited impact on IDC grading, challenging the assumption of performance enhancement through SN.


Asunto(s)
Neoplasias de la Mama , Carcinoma Ductal de Mama , Carcinoma Ductal , Humanos , Femenino , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Mama/patología , Redes Neurales de la Computación , Coloración y Etiquetado , Carcinoma Ductal de Mama/patología
5.
Quant Imaging Med Surg ; 13(9): 5902-5920, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37711826

RESUMEN

Background: Renal cancer is one of the leading causes of cancer-related deaths worldwide, and early detection of renal cancer can significantly improve the patients' survival rate. However, the manual analysis of renal tissue in the current clinical practices is labor-intensive, prone to inter-pathologist variations and easy to miss the important cancer markers, especially in the early stage. Methods: In this work, we developed deep convolutional neural network (CNN) based heterogeneous ensemble models for automated analysis of renal histopathological images without detailed annotations. The proposed method would first segment the histopathological tissue into patches with different magnification factors, then classify the generated patches into normal and tumor tissues using the pre-trained CNNs and lastly perform the deep ensemble learning to determine the final classification. The heterogeneous ensemble models consisted of CNN models from five deep learning architectures, namely VGG, ResNet, DenseNet, MobileNet, and EfficientNet. These CNN models were fine-tuned and used as base learners, they exhibited different performances and had great diversity in histopathological image analysis. The CNN models with superior classification accuracy (Acc) were then selected to undergo ensemble learning for the final classification. The performance of the investigated ensemble approaches was evaluated against the state-of-the-art literature. Results: The performance evaluation demonstrated the superiority of the proposed best performing ensembled model: five-CNN based weighted averaging model, with an Acc (99%), specificity (Sp) (98%), F1-score (F1) (99%) and area under the receiver operating characteristic (ROC) curve (98%) but slightly inferior recall (Re) (99%) compared to the literature. Conclusions: The outstanding robustness of the developed ensemble model with a superiorly high-performance scores in the evaluated metrics suggested its reliability as a diagnosis system for assisting the pathologists in analyzing the renal histopathological tissues. It is expected that the proposed ensemble deep CNN models can greatly improve the early detection of renal cancer by making the diagnosis process more efficient, and less misdetection and misdiagnosis; subsequently, leading to higher patients' survival rate.

6.
PeerJ Comput Sci ; 9: e1325, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37346512

RESUMEN

Oil palm is a key agricultural resource in Malaysia. However, palm disease, most prominently basal stem rot caused at least RM 255 million of annual economic loss. Basal stem rot is caused by a fungus known as Ganoderma boninense. An infected tree shows few symptoms during early stage of infection, while potentially suffers an 80% lifetime yield loss and the tree may be dead within 2 years. Early detection of basal stem rot is crucial since disease control efforts can be done. Laboratory BSR detection methods are effective, but the methods have accuracy, biosafety, and cost concerns. This review article consists of scientific articles related to the oil palm tree disease, basal stem rot, Ganoderma Boninense, remote sensors and deep learning that are listed in the Web of Science since year 2012. About 110 scientific articles were found that is related to the index terms mentioned and 60 research articles were found to be related to the objective of this research thus included in this review article. From the review, it was found that the potential use of deep learning methods were rarely explored. Some research showed unsatisfactory results due to limitations on dataset. However, based on studies related to other plant diseases, deep learning in combination with data augmentation techniques showed great potentials, showing remarkable detection accuracy. Therefore, the feasibility of analyzing oil palm remote sensor data using deep learning models together with data augmentation techniques should be studied. On a commercial scale, deep learning used together with remote sensors and unmanned aerial vehicle technologies showed great potential in the detection of basal stem rot disease.

7.
Diagnostics (Basel) ; 13(10)2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37238277

RESUMEN

Gastric cancer is a leading cause of cancer-related deaths worldwide, underscoring the need for early detection to improve patient survival rates. The current clinical gold standard for detection is histopathological image analysis, but this process is manual, laborious, and time-consuming. As a result, there has been growing interest in developing computer-aided diagnosis to assist pathologists. Deep learning has shown promise in this regard, but each model can only extract a limited number of image features for classification. To overcome this limitation and improve classification performance, this study proposes ensemble models that combine the decisions of several deep learning models. To evaluate the effectiveness of the proposed models, we tested their performance on the publicly available gastric cancer dataset, Gastric Histopathology Sub-size Image Database. Our experimental results showed that the top 5 ensemble model achieved state-of-the-art detection accuracy in all sub-databases, with the highest detection accuracy of 99.20% in the 160 × 160 pixels sub-database. These results demonstrated that ensemble models could extract important features from smaller patch sizes and achieve promising performance. Overall, our proposed work could assist pathologists in detecting gastric cancer through histopathological image analysis and contribute to early gastric cancer detection to improve patient survival rates.

8.
Comput Intell Neurosci ; 2023: 4208231, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36756163

RESUMEN

Cardiac health diseases are one of the key causes of death around the globe. The number of heart patients has considerably increased during the pandemic. Therefore, it is crucial to assess and analyze the medical and cardiac images. Deep learning architectures, specifically convolutional neural networks have profoundly become the primary choice for the assessment of cardiac medical images. The left ventricle is a vital part of the cardiovascular system where the boundary and size perform a significant role in the evaluation of cardiac function. Due to automatic segmentation and good promising results, the left ventricle segmentation using deep learning has attracted a lot of attention. This article presents a critical review of deep learning methods used for the left ventricle segmentation from frequently used imaging modalities including magnetic resonance images, ultrasound, and computer tomography. This study also demonstrates the details of the network architecture, software, and hardware used for training along with publicly available cardiac image datasets and self-prepared dataset details incorporated. The summary of the evaluation matrices with results used by different researchers is also presented in this study. Finally, all this information is summarized and comprehended in order to assist the readers to understand the motivation and methodology of various deep learning models, as well as exploring potential solutions to future challenges in LV segmentation.


Asunto(s)
Aprendizaje Profundo , Cardiopatías , Humanos , Ventrículos Cardíacos/diagnóstico por imagen , Corazón , Redes Neurales de la Computación , Imagen por Resonancia Magnética , Procesamiento de Imagen Asistido por Computador/métodos
9.
Life (Basel) ; 13(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36676073

RESUMEN

The segmentation of the left ventricle (LV) is one of the fundamental procedures that must be performed to obtain quantitative measures of the heart, such as its volume, area, and ejection fraction. In clinical practice, the delineation of LV is still often conducted semi-automatically, leaving it open to operator subjectivity. The automatic LV segmentation from echocardiography images is a challenging task due to poorly defined boundaries and operator dependency. Recent research has demonstrated that deep learning has the capability to employ the segmentation process automatically. However, the well-known state-of-the-art segmentation models still lack in terms of accuracy and speed. This study aims to develop a single-stage lightweight segmentation model that precisely and rapidly segments the LV from 2D echocardiography images. In this research, a backbone network is used to acquire both low-level and high-level features. Two parallel blocks, known as the spatial feature unit and the channel feature unit, are employed for the enhancement and improvement of these features. The refined features are merged by an integrated unit to segment the LV. The performance of the model and the time taken to segment the LV are compared to other established segmentation models, DeepLab, FCN, and Mask RCNN. The model achieved the highest values of the dice similarity index (0.9446), intersection over union (0.8445), and accuracy (0.9742). The evaluation metrics and processing time demonstrate that the proposed model not only provides superior quantitative results but also trains and segments the LV in less time, indicating its improved performance over competing segmentation models.

10.
Sci Rep ; 12(1): 19200, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36357456

RESUMEN

Computer-aided Invasive Ductal Carcinoma (IDC) grading classification systems based on deep learning have shown that deep learning may achieve reliable accuracy in IDC grade classification using histopathology images. However, there is a dearth of comprehensive performance comparisons of Convolutional Neural Network (CNN) designs on IDC in the literature. As such, we would like to conduct a comparison analysis of the performance of seven selected CNN models: EfficientNetB0, EfficientNetV2B0, EfficientNetV2B0-21k, ResNetV1-50, ResNetV2-50, MobileNetV1, and MobileNetV2 with transfer learning. To implement each pre-trained CNN architecture, we deployed the corresponded feature vector available from the TensorFlowHub, integrating it with dropout and dense layers to form a complete CNN model. Our findings indicated that the EfficientNetV2B0-21k (0.72B Floating-Point Operations and 7.1 M parameters) outperformed other CNN models in the IDC grading task. Nevertheless, we discovered that practically all selected CNN models perform well in the IDC grading task, with an average balanced accuracy of 0.936 ± 0.0189 on the cross-validation set and 0.9308 ± 0.0211on the test set.


Asunto(s)
Carcinoma Ductal , Redes Neurales de la Computación , Humanos , Publicaciones , Aprendizaje Automático
12.
Front Public Health ; 10: 981019, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36091529

RESUMEN

One of the primary factors contributing to death across all age groups is cardiovascular disease. In the analysis of heart function, analyzing the left ventricle (LV) from 2D echocardiographic images is a common medical procedure for heart patients. Consistent and accurate segmentation of the LV exerts significant impact on the understanding of the normal anatomy of the heart, as well as the ability to distinguish the aberrant or diseased structure of the heart. Therefore, LV segmentation is an important and critical task in medical practice, and automated LV segmentation is a pressing need. The deep learning models have been utilized in research for automatic LV segmentation. In this work, three cutting-edge convolutional neural network architectures (SegNet, Fully Convolutional Network, and Mask R-CNN) are designed and implemented to segment the LV. In addition, an echocardiography image dataset is generated, and the amount of training data is gradually increased to measure segmentation performance using evaluation metrics. The pixel's accuracy, precision, recall, specificity, Jaccard index, and dice similarity coefficients are applied to evaluate the three models. The Mask R-CNN model outperformed the other two models in these evaluation metrics. As a result, the Mask R-CNN model is used in this study to examine the effect of training data. For 4,000 images, the network achieved 92.21% DSC value, 85.55% Jaccard index, 98.76% mean accuracy, 96.81% recall, 93.15% precision, and 96.58% specificity value. Relatively, the Mask R-CNN outperformed other architectures, and the performance achieves stability when the model is trained using more than 4,000 training images.


Asunto(s)
Aprendizaje Profundo , Ventrículos Cardíacos , Ventrículos Cardíacos/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Redes Neurales de la Computación
13.
Front Aging Neurosci ; 14: 876202, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35721012

RESUMEN

Alzheimer's disease (AD) is an irreversible neurological disorder that affects the vast majority of dementia cases, leading patients to experience gradual memory loss and cognitive function decline. Despite the lack of a cure, early detection of Alzheimer's disease permits the provision of preventive medication to slow the disease's progression. The objective of this project is to develop a computer-aided method based on a deep learning model to distinguish Alzheimer's disease (AD) from cognitively normal and its early stage, mild cognitive impairment (MCI), by just using structural MRI (sMRI). To attain this purpose, we proposed a multiclass classification method based on 3D T1-weight brain sMRI images from the ADNI database. Axial brain images were extracted from 3D MRI and fed into the convolutional neural network (CNN) for multiclass classification. Three separate models were tested: a CNN built from scratch, VGG-16, and ResNet-50. As a feature extractor, the VGG-16 and ResNet-50 convolutional bases trained on the ImageNet dataset were employed. To achieve classification, a new densely connected classifier was implemented on top of the convolutional bases.

14.
Behav Neurol ; 2021: 2684855, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34777631

RESUMEN

Spine surgeries impose risk to the spine's surrounding anatomical and physiological structures especially the spinal cord and the nerve roots. Intraoperative neuromonitoring (IONM) is a technology developed to monitor the integrity of the spinal cord and the nerve roots via the surgery. Transcranial motor evoked potential (TcMEP) (one of the IONM modalities) is adopted to monitor the integrity of the motor pathway of the spinal cord and the motor nerve roots. Recent research suggested that the IONM is conducive as a prognostic tool towards the patient's functional outcome. This paper summarizes the researches of IONM being adopted as a prognostic tool. In addition, this paper highlights the problems associated with the signal parameters as the improvement criteria in the previous researches. Lastly, we review the challenges of TcMEP to achieve a prognostic tool focusing on the factors that could interfere with the generation of a stable TcMEP response. The final section will discuss recommendations for IONM technology to achieve an objective prognostic tool.


Asunto(s)
Potenciales Evocados Motores , Monitorización Neurofisiológica Intraoperatoria , Humanos , Procedimientos Neuroquirúrgicos , Médula Espinal , Columna Vertebral/cirugía
15.
Comput Intell Neurosci ; 2021: 4931437, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34804143

RESUMEN

Osteoarthritis (OA), especially knee OA, is the most common form of arthritis, causing significant disability in patients worldwide. Manual diagnosis, segmentation, and annotations of knee joints remain as the popular method to diagnose OA in clinical practices, although they are tedious and greatly subject to user variation. Therefore, to overcome the limitations of the commonly used method as above, numerous deep learning approaches, especially the convolutional neural network (CNN), have been developed to improve the clinical workflow efficiency. Medical imaging processes, especially those that produce 3-dimensional (3D) images such as MRI, possess ability to reveal hidden structures in a volumetric view. Acknowledging that changes in a knee joint is a 3D complexity, 3D CNN has been employed to analyse the joint problem for a more accurate diagnosis in the recent years. In this review, we provide a broad overview on the current 2D and 3D CNN approaches in the OA research field. We reviewed 74 studies related to classification and segmentation of knee osteoarthritis from the Web of Science database and discussed the various state-of-the-art deep learning approaches proposed. We highlighted the potential and possibility of 3D CNN in the knee osteoarthritis field. We concluded by discussing the possible challenges faced as well as the potential advancements in adopting 3D CNNs in this field.


Asunto(s)
Aprendizaje Profundo , Osteoartritis de la Rodilla , Humanos , Imagen por Resonancia Magnética , Redes Neurales de la Computación , Osteoartritis de la Rodilla/diagnóstico por imagen
16.
Arab J Sci Eng ; : 1-18, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34422543

RESUMEN

Hospital readmission shortly after discharge threatens the quality of patient care and leads to increased medical care costs. In the United States, hospitals with high readmission rates are subject to federal financial penalties. This concern calls for incentives for healthcare facilities to reduce their readmission rates by predicting patients who are at high risk of readmission. Conventional practices involve the use of rule-based assessment scores and traditional statistical methods, such as logistic regression, in developing risk prediction models. The recent advancements in machine learning driven by improved computing power and sophisticated algorithms have the potential to produce highly accurate predictions. However, the value of such models could be overrated. Meanwhile, the use of other flexible models that leverage simple algorithms offer great transparency in terms of feature interpretation, which is beneficial in clinical settings. This work presents an overview of the current trends in risk prediction models developed in the field of readmission. The various techniques adopted by researchers in recent years are described, and the topic of whether complex models outperform simple ones in readmission risk stratification is investigated.

17.
Quant Imaging Med Surg ; 11(8): 3797-3811, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34341751

RESUMEN

Amide proton transfer (APT) magnetic resonance imaging (MRI) is a pH-sensitive imaging technique that can potentially complement existing clinical imaging protocol for the assessment of ischemic stroke. This review aims to summarize the developments in the clinical research of APT imaging of ischemic stroke after 17 years of progress since its first preclinical study in 2003. Three electronic databases: PubMed, Scopus, and Cochrane Library were systematically searched for articles reporting clinical studies on APT imaging of ischemic stroke. Only articles in English published between 2003 to 2020 that involved patients presenting ischemic stroke-like symptoms that underwent APT MRI were included. Of 1,093 articles screened, 14 articles met the inclusion criteria with a total of 282 patients that had been scanned using APT imaging. Generally, the clinical studies agreed APT effect to be hypointense in ischemic tissue compared to healthy tissue, allowing for the detection of ischemic stroke. Other uses of APT imaging have also been investigated in the studies, including penumbra identification, predicting long term clinical outcome, and serving as a biomarker for supportive treatment monitoring. The published results demonstrated the potential of APT imaging in these applications, but further investigations and larger trials are needed for conclusive evidence. Future studies are recommended to report the result of asymmetry analysis at 3.5 ppm along with the findings of the study to reduce this contribution to the heterogeneity of experimental methods observed and to facilitate effective comparison of results between studies and centers. In addition, it is important to focus on the development of fast 3D imaging for full volumetric ischemic tissue assessment for clinical translation.

18.
Curr Med Imaging ; 17(8): 981-987, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33319690

RESUMEN

BACKGROUND: Osteoarthritis (OA) is a common degenerative joint inflammation that may lead to disability. Although OA is not lethal, this disease will remarkably affect patient's mobility and their daily lives. Detecting OA at an early stage allows for early intervention and may slow down disease progression. INTRODUCTION: Magnetic resonance imaging is a useful technique to visualize soft tissues within the knee joint. Cartilage delineation in magnetic resonance (MR) images helps in understanding the disease progressions. Convolutional neural networks (CNNs) have shown promising results in computer vision tasks, and various encoder-decoder-based segmentation neural networks are introduced in the last few years. However, the performances of such networks are unknown in the context of cartilage delineation. METHODS: This study trained and compared 10 encoder-decoder-based CNNs in performing cartilage delineation from knee MR images. The knee MR images are obtained from the Osteoarthritis Initiative (OAI). The benchmarking process is to compare various CNNs based on physical specifications and segmentation performances. RESULTS: LadderNet has the least trainable parameters with the model size of 5 MB. UNetVanilla crowned the best performances by having 0.8369, 0.9108, and 0.9097 on JSC, DSC, and MCC. CONCLUSION: UNetVanilla can be served as a benchmark for cartilage delineation in knee MR images, while LadderNet served as an alternative if there are hardware limitations during production.


Asunto(s)
Articulación de la Rodilla , Osteoartritis de la Rodilla , Cartílago , Humanos , Articulación de la Rodilla/diagnóstico por imagen , Imagen por Resonancia Magnética , Redes Neurales de la Computación , Osteoartritis de la Rodilla/diagnóstico por imagen
19.
Magn Reson Med ; 85(4): 2188-2200, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33107119

RESUMEN

PURPOSE: To assess the correlation and differences between common amide proton transfer (APT) quantification methods in the diagnosis of ischemic stroke. METHODS: Five APT quantification methods, including asymmetry analysis and its variants as well as two Lorentzian model-based methods, were applied to data acquired from six rats that underwent middle cerebral artery occlusion scanned at 9.4T. Diffusion and perfusion-weighted images, and water relaxation time maps were also acquired to study the relationship of these conventional imaging modalities with the different APT quantification methods. RESULTS: The APT ischemic area estimates had varying sizes (Jaccard index: 0.544 ≤ J ≤ 0.971) and had varying correlations in their distributions (Pearson correlation coefficient: 0.104 ≤ r ≤ 0.995), revealing discrepancies in the quantified ischemic areas. The Lorentzian methods produced the highest contrast-to-noise ratios (CNRs; 1.427 ≤ CNR ≤ 2.002), but generated APT ischemic areas that were comparable in size to the cerebral blood flow (CBF) deficit areas; asymmetry analysis and its variants produced APT ischemic areas that were smaller than the CBF deficit areas but larger than the apparent diffusion coefficient deficit areas, though having lower CNRs (0.561 ≤ CNR ≤ 1.083). CONCLUSION: There is a need to further investigate the accuracy and correlation of each quantification method with the pathophysiology using a larger scale multi-imaging modality and multi-time-point clinical study. Future studies should include the magnetization transfer ratio asymmetry results alongside the findings of the study to facilitate the comparison of results between different centers and also the published literature.


Asunto(s)
Isquemia Encefálica , Neoplasias Encefálicas , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Amidas , Animales , Isquemia Encefálica/diagnóstico por imagen , Imagen por Resonancia Magnética , Protones , Ratas , Accidente Cerebrovascular/diagnóstico por imagen
20.
Curr Med Imaging ; 16(6): 739-751, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32723246

RESUMEN

BACKGROUND: Ultrasound (US) imaging can be a convenient and reliable substitute for magnetic resonance imaging in the investigation or screening of articular cartilage injury. However, US images suffer from two main impediments, i.e., low contrast ratio and presence of speckle noise. AIMS: A variation of anisotropic diffusion is proposed that can reduce speckle noise without compromising the image quality of the edges and other important details. METHODS: For this technique, four gradient thresholds were adopted instead of one. A new diffusivity function that preserves the edge of the resultant image is also proposed. To automatically terminate the iterative procedures, the Mean Absolute Error as its stopping criterion was implemented. RESULTS: Numerical results obtained by simulations unanimously indicate that the proposed method outperforms conventional speckle reduction techniques. Nevertheless, this preliminary study has been conducted based on a small number of asymptomatic subjects. CONCLUSION: Future work must investigate the feasibility of this method in a large cohort and its clinical validity through testing subjects with a symptomatic cartilage injury.


Asunto(s)
Cartílago Articular/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Articulación de la Rodilla/diagnóstico por imagen , Ultrasonografía/métodos , Anisotropía , Humanos , Osteoartritis de la Rodilla/diagnóstico por imagen , Relación Señal-Ruido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...