RESUMEN
Four novel seconeodolastane diterpenoids, named tricholomalides D-G, were isolated, together with the known tricholomalide C, from the fruiting bodies of Tricholoma ustaloides Romagn., a species belonging to the large Tricholoma genus of higher mushrooms (Basidiomycota, family Tricholomataceae). They were isolated through multiple chromatographic separations, and the structures, including the absolute configuration, were established through a detailed analysis of MS, NMR, and CD spectral data and comparison with related compounds reported in the literature, which has been thoroughly revised.
Asunto(s)
Fagus , Tricholoma , Madera , Tricholoma/química , Espectroscopía de Resonancia MagnéticaRESUMEN
The secondary metabolites produced by Tricholoma ustaloides Romagn., a mushroom species belonging to the large Tricholoma genus (Basidiomycota, Tricholomataceae), are unknown. Therefore, encouraged by the interesting results obtained in our previous chemical analyses of a few Tricholoma species collected in Italian woods, we aimed to investigate the secondary metabolites of Tricholoma ustaloides. The chemical analysis involved the isolation and characterization of secondary metabolites through an extensive chromatographic study. The structures of isolated metabolites, including the absolute configuration, were established based on a detailed analysis of MS, NMR spectroscopic, optical rotation, and circular dicroism data, and on comparison with those of related compounds reported in the literature. Two novel lanostane triterpenoids, named tricholidic acids B and C, together with triglycerides, a mixture of free fatty acids, five unidentified metabolites, and the known rare saponaceolides F and J, tricholidic acid, and tricholomenyn C, were isolated from an EtOAc extract of fruiting bodies of Tricholoma ustaloides that were collected in an Italian beech wood. This is the second example of isolation of tricholidic acid derivatives from a natural source. Saponaceolides F and J exhibited high cytotoxicity (IC50 values ≤ 10 µM) against a panel of five human cancer cell lines. The toxicity against myeloid leukemia (HL-60), lung cancer (A-549), hepatocellular cancer (HepG2), renal cancer (Caki-1), and breast cancer (MCF-7) cells was higher than that shown by the very well-known cytotoxic drug cisplatin.