Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Transl Cancer Res ; 13(5): 2544-2560, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38881914

RESUMEN

Background and Objective: Cancer is a leading cause of morbidity and mortality worldwide. The emergence of digital pathology and deep learning technologies signifies a transformative era in healthcare. These technologies can enhance cancer detection, streamline operations, and bolster patient care. A substantial gap exists between the development phase of deep learning models in controlled laboratory environments and their translations into clinical practice. This narrative review evaluates the current landscape of deep learning and digital pathology, analyzing the factors influencing model development and implementation into clinical practice. Methods: We searched multiple databases, including Web of Science, Arxiv, MedRxiv, BioRxiv, Embase, PubMed, DBLP, Google Scholar, IEEE Xplore, Semantic Scholar, and Cochrane, targeting articles on whole slide imaging and deep learning published from 2014 and 2023. Out of 776 articles identified based on inclusion criteria, we selected 36 papers for the analysis. Key Content and Findings: Most articles in this review focus on the in-laboratory phase of deep learning model development, a critical stage in the deep learning lifecycle. Challenges arise during model development and their integration into clinical practice. Notably, lab performance metrics may not always match real-world clinical outcomes. As technology advances and regulations evolve, we expect more clinical trials to bridge this performance gap and validate deep learning models' effectiveness in clinical care. High clinical accuracy is vital for informed decision-making throughout a patient's cancer care. Conclusions: Deep learning technology can enhance cancer detection, clinical workflows, and patient care. Challenges may arise during model development. The deep learning lifecycle involves data preprocessing, model development, and clinical implementation. Achieving health equity requires including diverse patient groups and eliminating bias during implementation. While model development is integral, most articles focus on the pre-deployment phase. Future longitudinal studies are crucial for validating models in real-world settings post-deployment. A collaborative approach among computational pathologists, technologists, industry, and healthcare providers is essential for driving adoption in clinical settings.

2.
Cureus ; 12(8): e10005, 2020 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-32983702

RESUMEN

Introduction Since December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread throughout the world with a large medical and economic impact. On March 12, 2020, the World Health Organization (WHO) classified SARS-CoV-2 as a pandemic. As a result of this worldwide public health crisis, politicians, elected officials, and healthcare professionals emergently began trialing hydroxychloroquine (HCQ) in efforts to treat and prevent the transmission of the virus. This meta-analysis was performed to assess the effects of HCQ on patients with COVID-19. Methods  This meta-analysis adheres to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRIMA) guidelines. Selected articles published between December 2019 and July 2020 were found utilizing the following search engines: PubMed, Google Scholar, Cochrane Library, DisasterLit, Clinicaltrials.gov, Medrxiv, and Embase. Two independent physician reviewers screened eligible articles that met the inclusion and exclusion criteria of the analysis. The outcome measures analyzed were mortality rate, rate of disease progression/improvement, rate of disease severity, and adverse effects of treatment. Six out of 14 studies that met the study's eligibility criteria were selected and further analyzed, with a total of 381 participants (n= 381). Conclusion From the studies analyzed, it was found that groups treated with HCQ had an overall mortality rate that was 2.5 times greater than that of the control group. HCQ treated patients had higher rates of adverse clinical outcomes and side effects compared with the control populations. Lastly, there was a 1.2 times higher rate of improvement in the group of HCQ treated patients with mild to moderate symptoms as compared to the control group.

3.
Cureus ; 12(8): e10017, 2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32989411

RESUMEN

Lung cancer is the number one cause of cancer-related deaths in the United States as well as worldwide. Radiologists and physicians experience heavy daily workloads, thus are at high risk for burn-out. To alleviate this burden, this narrative literature review compares the performance of four different artificial intelligence (AI) models in lung nodule cancer detection, as well as their performance to physicians/radiologists reading accuracy. A total of 648 articles were selected by two experienced physicians with over 10 years of experience in the fields of pulmonary critical care, and hospital medicine. The data bases used to search and select the articles are PubMed/MEDLINE, EMBASE, Cochrane library, Google Scholar, Web of science, IEEEXplore, and DBLP. The articles selected range from the years between 2008 and 2019. Four out of 648 articles were selected using the following inclusion criteria: 1) 18-65 years old, 2) CT chest scans, 2) lung nodule, 3) lung cancer, 3) deep learning, 4) ensemble and 5) classic methods. The exclusion criteria used in this narrative review include: 1) age greater than 65 years old, 2) positron emission tomography (PET) hybrid scans, 3) chest X-ray (CXR) and 4) genomics. The model performance outcomes metrics are measured and evaluated in sensitivity, specificity, accuracy, receiver operator characteristic (ROC) curve, and the area under the curve (AUC). This hybrid deep-learning model is a state-of-the-art architecture, with high-performance accuracy and low false-positive results. Future studies, comparing each model accuracy at depth is key. Automated physician-assist systems as this model in this review article help preserve a quality doctor-patient relationship.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...