Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Neural Eng ; 21(3)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38648781

RESUMEN

Objective.Invasive brain-computer interfaces (BCIs) are promising communication devices for severely paralyzed patients. Recent advances in intracranial electroencephalography (iEEG) coupled with natural language processing have enhanced communication speed and accuracy. It should be noted that such a speech BCI uses signals from the motor cortex. However, BCIs based on motor cortical activities may experience signal deterioration in users with motor cortical degenerative diseases such as amyotrophic lateral sclerosis. An alternative approach to using iEEG of the motor cortex is necessary to support patients with such conditions.Approach. In this study, a multimodal embedding of text and images was used to decode visual semantic information from iEEG signals of the visual cortex to generate text and images. We used contrastive language-image pretraining (CLIP) embedding to represent images presented to 17 patients implanted with electrodes in the occipital and temporal cortices. A CLIP image vector was inferred from the high-γpower of the iEEG signals recorded while viewing the images.Main results.Text was generated by CLIPCAP from the inferred CLIP vector with better-than-chance accuracy. Then, an image was created from the generated text using StableDiffusion with significant accuracy.Significance.The text and images generated from iEEG through the CLIP embedding vector can be used for improved communication.


Asunto(s)
Interfaces Cerebro-Computador , Electrocorticografía , Humanos , Masculino , Femenino , Electrocorticografía/métodos , Adulto , Electroencefalografía/métodos , Persona de Mediana Edad , Electrodos Implantados , Adulto Joven , Estimulación Luminosa/métodos
2.
bioRxiv ; 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-38352497

RESUMEN

γ-Secretase plays a pivotal role in the central nervous system. Our recent development of genetically encoded Forster resonance energy transfer (FRET)-based biosensors has enabled the spatiotemporal recording of γ-secretase activity on a cell-by-cell basis in live neurons in culture. Nevertheless, how γ-secretase activity is regulated in vivo remains unclear. Here we employ the near-infrared (NIR) C99 720-670 biosensor and NIR confocal microscopy to quantitatively record γ-secretase activity in individual neurons in living mouse brains. Intriguingly, we uncovered that γ-secretase activity may influence the activity of γ-secretase in neighboring neurons, suggesting a potential "cell non-autonomous" regulation of γ-secretase in mouse brains. Given that γ-secretase plays critical roles in important biological events and various diseases, our new assay in vivo would become a new platform that enables dissecting the essential roles of γ-secretase in normal health and diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA