Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Autophagy ; 13(9): 1613-1614, 2017 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-28722507

RESUMEN

Expansions of polyglutamine (polyQ) tracts in different proteins cause 9 neurodegenerative conditions, such as Huntington disease and various ataxias. However, many normal mammalian proteins contain shorter polyQ tracts. As these are frequently conserved in multiple species, it is likely that some of these polyQ tracts have important but unknown biological functions. Here we review our recent study showing that the polyQ domain of the deubiquitinase ATXN3/ataxin-3 enables its interaction with BECN1/beclin 1, a key macroautophagy/autophagy initiator. ATXN3 regulates autophagy by deubiquitinating BECN1 and protecting it from proteasomal degradation. Interestingly, expanded polyQ tracts in other polyglutamine disease proteins compete with the shorter ATXN3 polyQ stretch and interfere with the ATXN3-BECN1 interaction. This competition results in decreased BECN1 levels and impaired starvation-induced autophagy, which phenocopies the loss of autophagic function mediated by ATXN3. Our findings describe a new autophagy-protective mechanism that may be altered in multiple neurodegenerative diseases.


Asunto(s)
Autofagia/efectos de los fármacos , Péptidos/farmacología , Animales , Ataxina-3/química , Ataxina-3/metabolismo , Humanos , Modelos Biológicos , Proteínas Mutantes/metabolismo , Polimorfismo Genético , Expansión de Repetición de Trinucleótido/genética
3.
Nature ; 545(7652): 108-111, 2017 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-28445460

RESUMEN

Nine neurodegenerative diseases are caused by expanded polyglutamine (polyQ) tracts in different proteins, such as huntingtin in Huntington's disease and ataxin 3 in spinocerebellar ataxia type 3 (SCA3). Age at onset of disease decreases with increasing polyglutamine length in these proteins and the normal length also varies. PolyQ expansions drive pathogenesis in these diseases, as isolated polyQ tracts are toxic, and an N-terminal huntingtin fragment comprising exon 1, which occurs in vivo as a result of alternative splicing, causes toxicity. Although such mutant proteins are prone to aggregation, toxicity is also associated with soluble forms of the proteins. The function of the polyQ tracts in many normal cytoplasmic proteins is unclear. One such protein is the deubiquitinating enzyme ataxin 3 (refs 7, 8), which is widely expressed in the brain. Here we show that the polyQ domain enables wild-type ataxin 3 to interact with beclin 1, a key initiator of autophagy. This interaction allows the deubiquitinase activity of ataxin 3 to protect beclin 1 from proteasome-mediated degradation and thereby enables autophagy. Starvation-induced autophagy, which is regulated by beclin 1, was particularly inhibited in ataxin-3-depleted human cell lines and mouse primary neurons, and in vivo in mice. This activity of ataxin 3 and its polyQ-mediated interaction with beclin 1 was competed for by other soluble proteins with polyQ tracts in a length-dependent fashion. This competition resulted in impairment of starvation-induced autophagy in cells expressing mutant huntingtin exon 1, and this impairment was recapitulated in the brains of a mouse model of Huntington's disease and in cells from patients. A similar phenomenon was also seen with other polyQ disease proteins, including mutant ataxin 3 itself. Our data thus describe a specific function for a wild-type polyQ tract that is abrogated by a competing longer polyQ mutation in a disease protein, and identify a deleterious function of such mutations distinct from their propensity to aggregate.


Asunto(s)
Ataxina-3/química , Ataxina-3/metabolismo , Autofagia , Beclina-1/metabolismo , Péptidos/metabolismo , Animales , Ataxina-3/deficiencia , Ataxina-3/genética , Unión Competitiva , Encéfalo/metabolismo , Encéfalo/patología , Línea Celular , Células Cultivadas , Modelos Animales de Enfermedad , Exones/genética , Femenino , Privación de Alimentos , Humanos , Proteína Huntingtina/química , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación , Neuronas/citología , Neuronas/metabolismo , Fagosomas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Dominios Proteicos , Estabilidad Proteica , Ubiquitina/metabolismo
4.
Nat Commun ; 7: 13821, 2016 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-27929117

RESUMEN

Aberrant protein aggregation is controlled by various chaperones, including CCT (chaperonin containing TCP-1)/TCP-1/TRiC. Mutated CCT4/5 subunits cause sensory neuropathy and CCT5 expression is decreased in Alzheimer's disease. Here, we show that CCT integrity is essential for autophagosome degradation in cells or Drosophila and this phenomenon is orchestrated by the actin cytoskeleton. When autophagic flux is reduced by compromise of individual CCT subunits, various disease-relevant autophagy substrates accumulate and aggregate. The aggregation of proteins like mutant huntingtin, ATXN3 or p62 after CCT2/5/7 depletion is predominantly autophagy dependent, and does not further increase with CCT knockdown in autophagy-defective cells/organisms, implying surprisingly that the effect of loss-of-CCT activity on mutant ATXN3 or huntingtin oligomerization/aggregation is primarily a consequence of autophagy inhibition rather than loss of physiological anti-aggregation activity for these proteins. Thus, our findings reveal an essential partnership between two key components of the proteostasis network and implicate autophagy defects in diseases with compromised CCT complex activity.


Asunto(s)
Autofagosomas/metabolismo , Autofagia , Chaperonina con TCP-1/metabolismo , Proteína Huntingtina/metabolismo , Agregación Patológica de Proteínas/metabolismo , Animales , Ataxina-3/metabolismo , Drosophila , Femenino , Células HeLa , Humanos , Lisosomas/metabolismo , Masculino , Ratones Transgénicos , Proteínas de Unión al ARN/metabolismo
5.
Nat Chem Biol ; 11(5): 347-354, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25848931

RESUMEN

Huntington's disease (HD) is a currently incurable neurodegenerative condition caused by an abnormally expanded polyglutamine tract in huntingtin (HTT). We identified new modifiers of mutant HTT toxicity by performing a large-scale 'druggable genome' siRNA screen in human cultured cells, followed by hit validation in Drosophila. We focused on glutaminyl cyclase (QPCT), which had one of the strongest effects on mutant HTT-induced toxicity and aggregation in the cell-based siRNA screen and also rescued these phenotypes in Drosophila. We found that QPCT inhibition induced the levels of the molecular chaperone αB-crystallin and reduced the aggregation of diverse proteins. We generated new QPCT inhibitors using in silico methods followed by in vitro screening, which rescued the HD-related phenotypes in cell, Drosophila and zebrafish HD models. Our data reveal a new HD druggable target affecting mutant HTT aggregation and provide proof of principle for a discovery pipeline from druggable genome screen to drug development.


Asunto(s)
Aminoaciltransferasas/efectos de los fármacos , Aminoaciltransferasas/genética , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/genética , ARN Interferente Pequeño , Aminoaciltransferasas/antagonistas & inhibidores , Animales , Células Cultivadas , Biología Computacional , Drosophila , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Proteína Huntingtina , Ratones , Ratones Endogámicos C57BL , Mutación/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Pez Cebra , Cadena B de alfa-Cristalina/metabolismo
6.
Nat Commun ; 5: 4998, 2014 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-25241929

RESUMEN

Genome-wide association studies have identified several loci associated with Alzheimer's disease (AD), including proteins involved in endocytic trafficking such as PICALM/CALM (phosphatidylinositol binding clathrin assembly protein). It is unclear how these loci may contribute to AD pathology. Here we show that CALM modulates autophagy and alters clearance of tau, a protein which is a known autophagy substrate and which is causatively linked to AD, both in vitro and in vivo. Furthermore, altered CALM expression exacerbates tau-mediated toxicity in zebrafish transgenic models. CALM influences autophagy by regulating the endocytosis of SNAREs, such as VAMP2, VAMP3 and VAMP8, which have diverse effects on different stages of the autophagy pathway, from autophagosome formation to autophagosome degradation. This study suggests that the AD genetic risk factor CALM modulates autophagy, and this may affect disease in a number of ways including modulation of tau turnover.


Asunto(s)
Autofagia , Proteínas de Ensamble de Clatrina Monoméricas/metabolismo , Proteínas tau/metabolismo , Animales , Proteína 12 Relacionada con la Autofagia , Línea Celular , Drosophila , Endocitosis , Femenino , Fibroblastos/metabolismo , Estudio de Asociación del Genoma Completo , Células HEK293 , Células HeLa , Humanos , Masculino , Ratones , Fagosomas , Unión Proteica , ARN Interferente Pequeño/metabolismo , Factores de Riesgo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Transfección , Proteína 2 de Membrana Asociada a Vesículas/metabolismo , Pez Cebra
7.
J Biol Chem ; 287(24): 20748-54, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-22461632

RESUMEN

The generation and subsequent aggregation of amyloid ß (Aß) peptides play a crucial initiating role in the pathogenesis of Alzheimer disease (AD). The two main isoforms of these peptides have 40 (Aß(40)) or 42 residues (Aß(42)), the latter having a higher propensity to aggregate in vitro and being the main component of the plaques observed in vivo in AD patients. We have designed a series of tandem dimeric constructs of these Aß peptides to probe the manner in which changes in the aggregation kinetics of Aß affect its deposition and toxicity in a Drosophila melanogaster model system. The levels of insoluble aggregates were found to be substantially elevated in flies expressing the tandem constructs of both Aß(40) and Aß(42) compared with the equivalent monomeric peptides, consistent with the higher effective concentration, and hence increased aggregation rate, of the peptides in the tandem repeat. A unique feature of the Aß(42) constructs, however, is the appearance of high levels of soluble oligomeric aggregates and a corresponding dramatic increase in their in vivo toxicity. The toxic nature of the Aß(42) peptide in vivo can therefore be attributed to the higher kinetic stability of the oligomeric intermediate states that it populates relative to those of Aß(40) rather than simply to its higher rate of aggregation.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Expresión Génica , Fragmentos de Péptidos/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/metabolismo , Modelos Animales de Enfermedad , Drosophila melanogaster , Humanos , Fragmentos de Péptidos/genética , Estabilidad Proteica , Solubilidad
8.
Mol Cell ; 43(1): 19-32, 2011 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-21726807

RESUMEN

Autophagy, a major degradation process for long-lived and aggregate-prone proteins, affects various human processes, such as development, immunity, cancer, and neurodegeneration. Several autophagy regulators have been identified in recent years. Here we show that nitric oxide (NO), a potent cellular messenger, inhibits autophagosome synthesis via a number of mechanisms. NO impairs autophagy by inhibiting the activity of S-nitrosylation substrates, JNK1 and IKKß. Inhibition of JNK1 by NO reduces Bcl-2 phosphorylation and increases the Bcl-2-Beclin 1 interaction, thereby disrupting hVps34/Beclin 1 complex formation. Additionally, NO inhibits IKKß and reduces AMPK phosphorylation, leading to mTORC1 activation via TSC2. Overexpression of nNOS, iNOS, or eNOS impairs autophagosome formation primarily via the JNK1-Bcl-2 pathway. Conversely, NOS inhibition enhances the clearance of autophagic substrates and reduces neurodegeneration in models of Huntington's disease. Our data suggest that nitrosative stress-mediated protein aggregation in neurodegenerative diseases may be, in part, due to autophagy inhibition.


Asunto(s)
Autofagia , Óxido Nítrico/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Beclina-1 , Línea Celular , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Inhibidores Enzimáticos/farmacología , Células HEK293 , Células HeLa , Humanos , Proteína Huntingtina , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Quinasa I-kappa B/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas de la Membrana/metabolismo , Ratones , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Complejos Multiproteicos , NG-Nitroarginina Metil Éster/farmacología , Proteínas del Tejido Nervioso/metabolismo , Óxido Nítrico/biosíntesis , Óxido Nítrico Sintasa/antagonistas & inhibidores , Óxido Nítrico Sintasa/metabolismo , Proteínas Nucleares/metabolismo , Fosforilación , Isoformas de Proteínas/metabolismo , Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas , Serina-Treonina Quinasas TOR , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/metabolismo
9.
Methods Enzymol ; 499: 227-58, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21683257

RESUMEN

Transgenic Drosophila melanogaster have been used to model both the physiological and pathological behavior of serpins. The ability to generate flies expressing serpins and to rapidly assess associated phenotypes contributes to the power of this paradigm. While providing a whole-organism model of serpinopathies the powerful toolkit of genetic interventions allows precise molecular dissection of important biological pathways. In this chapter, we summarize the contribution that flies have made to the serpin field and then describe some of the experimental methods that are employed in these studies. In particular, we will describe the generation of transgenic flies, the assessment of phenotypes, and the principles of how to perform a genetic screen.


Asunto(s)
Drosophila melanogaster/metabolismo , Serpinas/metabolismo , Animales , Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Drosophila melanogaster/genética , Humanos , Conformación Proteica , Serpinas/genética
10.
Nat Cell Biol ; 13(4): 453-60, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21394080

RESUMEN

mTOR (mammalian target of rapamycin) signalling and macroautophagy (henceforth autophagy) regulate numerous pathological and physiological processes, including cellular responses to altered nutrient levels. However, the mechanisms regulating mTOR and autophagy remain incompletely understood. Lysosomes are dynamic intracellular organelles intimately involved both in the activation of mTOR complex 1 (mTORC1) signalling and in degrading autophagic substrates. Here we report that lysosomal positioning coordinates anabolic and catabolic responses with changes in nutrient availability by orchestrating early plasma-membrane signalling events, mTORC1 signalling and autophagy. Activation of mTORC1 by nutrients correlates with its presence on peripheral lysosomes that are physically close to the upstream signalling modules, whereas starvation causes perinuclear clustering of lysosomes, driven by changes in intracellular pH. Lysosomal positioning regulates mTORC1 signalling, which in turn influences autophagosome formation. Lysosome positioning also influences autophagosome-lysosome fusion rates, and thus controls autophagic flux by acting at both the initiation and termination stages of the process. Our findings provide a physiological role for the dynamic state of lysosomal positioning in cells as a coordinator of mTORC1 signalling with autophagic flux.


Asunto(s)
Alimentos , Lisosomas/metabolismo , Lisosomas/ultraestructura , Proteínas/metabolismo , Autofagia/fisiología , Células HeLa , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Complejos Multiproteicos , Proteínas/genética , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
11.
Hum Mol Genet ; 19(23): 4573-86, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-20829225

RESUMEN

A major function of proteasomes and macroautophagy is to eliminate misfolded potentially toxic proteins. Mammalian proteasomes, however, cannot cleave polyglutamine (polyQ) sequences and seem to release polyQ-rich peptides. Puromycin-sensitive aminopeptidase (PSA) is the only cytosolic enzyme able to digest polyQ sequences. We tested whether PSA can protect against accumulation of polyQ fragments. In cultured cells, Drosophila and mouse muscles, PSA inhibition or knockdown increased aggregate content and toxicity of polyQ-expanded huntingtin exon 1. Conversely, PSA overexpression decreased aggregate content and toxicity. PSA inhibition also increased the levels of polyQ-expanded ataxin-3 as well as mutant α-synuclein and superoxide dismutase 1. These protective effects result from an unexpected ability of PSA to enhance macroautophagy. PSA overexpression increased, and PSA knockdown or inhibition reduced microtubule-associated protein 1 light chain 3-II (LC3-II) levels and the amount of protein degradation sensitive to inhibitors of lysosomal function and autophagy. Thus, by promoting autophagic protein clearance, PSA helps protect against accumulation of aggregation-prone proteins and proteotoxicity.


Asunto(s)
Aminopeptidasas/metabolismo , Autofagia , Péptidos/metabolismo , Aminopeptidasas/genética , Animales , Ataxina-3 , Línea Celular , Drosophila , Técnicas de Silenciamiento del Gen , Humanos , Proteína Huntingtina , Masculino , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fragmentos de Péptidos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Interferencia de ARN , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1 , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
12.
J Cell Biol ; 190(6): 1023-37, 2010 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-20855506

RESUMEN

Parkinson's disease (PD) is characterized pathologically by intraneuronal inclusions called Lewy bodies, largely comprised of α-synuclein. Multiplication of the α-synuclein gene locus increases α-synuclein expression and causes PD. Thus, overexpression of wild-type α-synuclein is toxic. In this study, we demonstrate that α-synuclein overexpression impairs macroautophagy in mammalian cells and in transgenic mice. Our data show that α-synuclein compromises autophagy via Rab1a inhibition and Rab1a overexpression rescues the autophagy defect caused by α-synuclein. Inhibition of autophagy by α-synuclein overexpression or Rab1a knockdown causes mislocalization of the autophagy protein, Atg9, and decreases omegasome formation. Rab1a, α-synuclein, and Atg9 all regulate formation of the omegasome, which marks autophagosome precursors.


Asunto(s)
Autofagia , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , alfa-Sinucleína/metabolismo , Animales , Línea Celular Tumoral , Drosophila melanogaster/metabolismo , Técnicas de Silenciamiento del Gen , Aparato de Golgi/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Biológicos , Fagosomas/metabolismo , Transporte de Proteínas , Vesículas Secretoras/metabolismo , Proteínas de Unión al GTP rab1/metabolismo
13.
Hum Mol Genet ; 19(17): 3413-29, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20566712

RESUMEN

Many neurodegenerative diseases exhibit protein accumulation and increased oxidative stress. Therapeutic strategies include clearing aggregate-prone proteins by enhancing autophagy or decreasing oxidative stress with antioxidants. Many autophagy-inducing stimuli increase reactive oxygen species (ROS), raising concerns that the benefits of autophagy up-regulation may be counterbalanced by ROS toxicity. Here we show that not all autophagy inducers significantly increase ROS. However, many antioxidants inhibit both basal and induced autophagy. By blocking autophagy, antioxidant drugs can increase the levels of aggregate-prone proteins associated with neurodegenerative disease. In fly and zebrafish models of Huntington's disease, antioxidants exacerbate the disease phenotype and abrogate the rescue seen with autophagy-inducing agents. Thus, the potential benefits in neurodegenerative diseases of some classes of antioxidants may be compromised by their autophagy-blocking properties.


Asunto(s)
Antioxidantes/administración & dosificación , Autofagia/efectos de los fármacos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/fisiopatología , Péptidos/metabolismo , Animales , Células COS , Chlorocebus aethiops , Modelos Animales de Enfermedad , Drosophila , Células HeLa , Humanos , Ratones , Ratones Endogámicos C57BL , Enfermedades Neurodegenerativas/embriología , Enfermedades Neurodegenerativas/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Pez Cebra
14.
Biochem J ; 412(2): 191-209, 2008 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-18466116

RESUMEN

Huntington's disease (HD) is a devastating autosomal dominant neurodegenerative disease caused by a CAG trinucleotide repeat expansion encoding an abnormally long polyglutamine tract in the huntingtin protein. Much has been learnt since the mutation was identified in 1993. We review the functions of wild-type huntingtin. Mutant huntingtin may cause toxicity via a range of different mechanisms. The primary consequence of the mutation is to confer a toxic gain of function on the mutant protein and this may be modified by certain normal activities that are impaired by the mutation. It is likely that the toxicity of mutant huntingtin is revealed after a series of cleavage events leading to the production of N-terminal huntingtin fragment(s) containing the expanded polyglutamine tract. Although aggregation of the mutant protein is a hallmark of the disease, the role of aggregation is complex and the arguments for protective roles of inclusions are discussed. Mutant huntingtin may mediate some of its toxicity in the nucleus by perturbing specific transcriptional pathways. HD may also inhibit mitochondrial function and proteasome activity. Importantly, not all of the effects of mutant huntingtin may be cell-autonomous, and it is possible that abnormalities in neighbouring neurons and glia may also have an impact on connected cells. It is likely that there is still much to learn about mutant huntingtin toxicity, and important insights have already come and may still come from chemical and genetic screens. Importantly, basic biological studies in HD have led to numerous potential therapeutic strategies.


Asunto(s)
Enfermedad de Huntington , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Expansión de Repetición de Trinucleótido , Animales , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Enfermedad de Huntington/terapia , Mitocondrias/metabolismo , Modelos Moleculares , Proteínas del Tejido Nervioso/química , Proteínas Nucleares/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Estructura Terciaria de Proteína , Especies Reactivas de Oxígeno/metabolismo , Transcripción Genética , Ubiquitina/metabolismo
15.
J Cell Sci ; 121(Pt 10): 1649-60, 2008 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-18430781

RESUMEN

Huntington disease (HD) is caused by a polyglutamine-expansion mutation in huntingtin (HTT) that makes the protein toxic and aggregate-prone. The subcellular localisation of huntingtin and many of its interactors suggest a role in endocytosis, and recently it has been shown that huntingtin interacts indirectly with the early endosomal protein Rab5 through HAP40. Here we show that Rab5 inhibition enhanced polyglutamine toxicity, whereas Rab5 overexpression attenuated toxicity in our cell and fly models of HD. We tried to identify a mechanism for the Rab5 effects in our HD model systems, and our data suggest that Rab5 acts at an early stage of autophagosome formation in a macromolecular complex that contains beclin 1 (BECN1) and Vps34. Interestingly chemical or genetic inhibition of endocytosis also impeded macroautophagy, and enhanced aggregation and toxicity of mutant huntingtin. However, in contrast to Rab5, inhibition of endocytosis by various means suppressed autophagosome-lysosome fusion (the final step in the macroautophagy pathway) similar to bafilomycin A1. Thus, Rab5, which has previously been thought to be exclusively involved in endocytosis, has a new role in macroautophagy. We have previously shown that macroautophagy is an important clearance route for several aggregate-prone proteins including mutant huntingtin. Thus, better understanding of Rab5-regulated autophagy might lead to rational therapeutic targets for HD and other protein-conformation diseases.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Portadoras/metabolismo , Enfermedad de Huntington/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas de Unión al GTP rab5/metabolismo , Animales , Autofagia , Células COS , Chlorocebus aethiops , Modelos Animales de Enfermedad , Drosophila , Células HeLa , Humanos , Transfección
16.
Hum Mol Genet ; 17(2): 170-8, 2008 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-17921520

RESUMEN

Huntington's disease (HD) is caused by a polyglutamine expansion mutation in the huntingtin protein that confers a toxic gain-of-function and causes the protein to become aggregate-prone. Aggregate-prone proteins are cleared by macroautophagy, and upregulating this process by rapamycin, which inhibits the mammalian target of rapamycin (mTOR), attenuates their toxicity in various HD models. Recently, we demonstrated that lithium induces mTOR-independent autophagy by inhibiting inositol monophosphatase (IMPase) and reducing inositol and IP3 levels. Here we show that glycogen synthase kinase-3beta (GSK-3beta), another enzyme inhibited by lithium, has opposite effects. In contrast to IMPase inhibition that enhances autophagy, GSK3beta inhibition attenuates autophagy and mutant huntingtin clearance by activating mTOR. In order to counteract the autophagy inhibitory effects of mTOR activation resulting from lithium treatment, we have used the mTOR inhibitor rapamycin in combination with lithium. This combination enhances macroautophagy by mTOR-independent (IMPase inhibition by lithium) and mTOR-dependent (mTOR inhibition by rapamycin) pathways. We provide proof-of-principle for this rational combination treatment approach in vivo by showing greater protection against neurodegeneration in an HD fly model with TOR inhibition and lithium, or in HD flies treated with rapamycin and lithium, compared with either pathway alone.


Asunto(s)
Autofagia/efectos de los fármacos , Drosophila , Enfermedad de Huntington/tratamiento farmacológico , Compuestos de Litio/farmacología , Sirolimus/farmacología , Animales , Células COS , Chlorocebus aethiops , Modelos Animales de Enfermedad , Proteínas de Drosophila/antagonistas & inhibidores , Femenino , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3 beta , Humanos , Inositol/biosíntesis , Compuestos de Litio/uso terapéutico , Masculino , Ratones , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Quinasas , Sirolimus/uso terapéutico , Serina-Treonina Quinasas TOR
17.
Nat Chem Biol ; 3(6): 331-8, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17486044

RESUMEN

The target of rapamycin proteins regulate various cellular processes including autophagy, which may play a protective role in certain neurodegenerative and infectious diseases. Here we show that a primary small-molecule screen in yeast yields novel small-molecule modulators of mammalian autophagy. We first identified new small-molecule enhancers (SMER) and inhibitors (SMIR) of the cytostatic effects of rapamycin in Saccharomyces cerevisiae. Three SMERs induced autophagy independently of rapamycin in mammalian cells, enhancing the clearance of autophagy substrates such as mutant huntingtin and A53T alpha-synuclein, which are associated with Huntington's disease and familial Parkinson's disease, respectively. These SMERs, which seem to act either independently or downstream of the target of rapamycin, attenuated mutant huntingtin-fragment toxicity in Huntington's disease cell and Drosophila melanogaster models, which suggests therapeutic potential. We also screened structural analogs of these SMERs and identified additional candidate drugs that enhanced autophagy substrate clearance. Thus, we have demonstrated proof of principle for a new approach for discovery of small-molecule modulators of mammalian autophagy.


Asunto(s)
Autofagia/efectos de los fármacos , Enfermedad de Huntington/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Saccharomyces cerevisiae/fisiología , Animales , Mamíferos , Modelos Biológicos , Fármacos Neuroprotectores/síntesis química , Saccharomyces cerevisiae/efectos de los fármacos , Sirolimus/antagonistas & inhibidores
18.
J Cell Sci ; 120(Pt 11): 1859-67, 2007 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-17488780

RESUMEN

The Down syndrome critical region (DSCR) on Chromosome 21 contains many genes whose duplication may lead to the major phenotypic features of Down syndrome and especially the associated mental retardation. However, the functions of DSCR genes are mostly unknown and their possible involvement in key brain developmental events still largely unexplored. In this report we show that the protein TTC3, encoded by one of the main DSCR candidate genes, physically interacts with Citron kinase (CIT-K) and Citron N (CIT-N), two effectors of the RhoA small GTPase that have previously been involved in neuronal proliferation and differentiation. More importantly, we found that TTC3 levels can strongly affect the NGF-induced differentiation of PC12 cells, by a CIT-K-dependent mechanism. Indeed, TTC3 overexpression leads to strong inhibition of neurite extension, which can be reverted by CIT-K RNAi. Conversely, TTC3 knockdown stimulates neurite extension in the same cells. Finally, we find that Rho, but not Rho kinase, is required for TTC3 differentiation-inhibiting activity. Our results suggest that the TTC3-RhoA-CIT-K pathway could be a crucial determinant of in vivo neuronal development, whose hyperactivity may result in detrimental effects on the normal differentiation program.


Asunto(s)
Diferenciación Celular , Síndrome de Down/genética , Neuronas/citología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Epistasis Genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Ratones , Factor de Crecimiento Nervioso/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Células PC12 , Fenotipo , Unión Proteica/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/química , Proteínas/química , Ratas , Ubiquitina-Proteína Ligasas , Quinasas Asociadas a rho
19.
J Cell Biol ; 170(7): 1101-11, 2005 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-16186256

RESUMEN

Macroautophagy is a key pathway for the clearance of aggregate-prone cytosolic proteins. Currently, the only suitable pharmacologic strategy for up-regulating autophagy in mammalian cells is to use rapamycin, which inhibits the mammalian target of rapamycin (mTOR), a negative regulator of autophagy. Here we describe a novel mTOR-independent pathway that regulates autophagy. We show that lithium induces autophagy, and thereby, enhances the clearance of autophagy substrates, like mutant huntingtin and alpha-synucleins. This effect is not mediated by glycogen synthase kinase 3beta inhibition. The autophagy-enhancing properties of lithium were mediated by inhibition of inositol monophosphatase and led to free inositol depletion. This, in turn, decreased myo-inositol-1,4,5-triphosphate (IP3) levels. Our data suggest that the autophagy effect is mediated at the level of (or downstream of) lowered IP3, because it was abrogated by pharmacologic treatments that increased IP3. This novel pharmacologic strategy for autophagy induction is independent of mTOR, and may help treatment of neurodegenerative diseases, like Huntington's disease, where the toxic protein is an autophagy substrate.


Asunto(s)
Autofagia/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Litio/farmacología , Monoéster Fosfórico Hidrolasas/antagonistas & inhibidores , Monoéster Fosfórico Hidrolasas/metabolismo , Animales , Células COS , Línea Celular Tumoral , Chlorocebus aethiops , Humanos , Proteína Huntingtina , Inositol/metabolismo , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Quinasas/metabolismo , Sirolimus/farmacología , Serina-Treonina Quinasas TOR , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
20.
Nat Genet ; 37(7): 771-6, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15980862

RESUMEN

Mutations that affect the dynein motor machinery are sufficient to cause motor neuron disease. It is not known why there are aggregates or inclusions in affected tissues in mice with such mutations and in most forms of human motor neuron disease. Here we identify a new mechanism of inclusion formation by showing that decreased dynein function impairs autophagic clearance of aggregate-prone proteins. We show that mutations of the dynein machinery enhanced the toxicity of the mutation that causes Huntington disease in fly and mouse models. Furthermore, loss of dynein function resulted in premature aggregate formation by mutant huntingtin and increased levels of the autophagosome marker LC3-II in both cell culture and mouse models, compatible with impaired autophagosome-lysosome fusion.


Asunto(s)
Adenina/análogos & derivados , Autofagia , Dineínas/genética , Enfermedad de Huntington/patología , Mutación , Adenina/farmacología , Adenilil Imidodifosfato/farmacología , Animales , Conducta Animal , Encéfalo/patología , Células COS , Chlorocebus aethiops , Cruzamientos Genéticos , Dípteros , Dineínas/antagonistas & inhibidores , Dineínas/metabolismo , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Cuerpos de Inclusión/metabolismo , Ratones , Ratones Mutantes , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/genética , Células PC12 , Complejo de la Endopetidasa Proteasomal/metabolismo , Ratas , Sinucleínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA