RESUMEN
We report the first measurement of monoenergetic muon neutrino charged current interactions. MiniBooNE has isolated 236 MeV muon neutrino events originating from charged kaon decay at rest (K^{+}âµ^{+}ν_{µ}) at the NuMI beamline absorber. These signal ν_{µ}-carbon events are distinguished from primarily pion decay in flight ν_{µ} and ν[over ¯]_{µ} backgrounds produced at the target station and decay pipe using their arrival time and reconstructed muon energy. The significance of the signal observation is at the 3.9σ level. The muon kinetic energy, neutrino-nucleus energy transfer (ω=E_{ν}-E_{µ}), and total cross section for these events are extracted. This result is the first known-energy, weak-interaction-only probe of the nucleus to yield a measurement of ω using neutrinos, a quantity thus far only accessible through electron scattering.
RESUMEN
The MiniBooNE experiment at Fermilab reports results from an analysis of ν[over ¯](e) appearance data from 11.27×10(20) protons on target in the antineutrino mode, an increase of approximately a factor of 2 over the previously reported results. An event excess of 78.4±28.5 events (2.8σ) is observed in the energy range 200
RESUMEN
The MiniBooNE Collaboration reports a search for nu_{micro} and nu[over]_{micro} disappearance in the Deltam;{2} region of 0.5-40 eV;{2}. These measurements are important for constraining models with extra types of neutrinos, extra dimensions, and CPT violation. Fits to the shape of the nu_{micro} and nu[over]_{micro} energy spectra reveal no evidence for disappearance at the 90% confidence level (C.L.) in either mode. The test of nu[over]_{micro} disappearance probes a region below Deltam;{2} = 40 eV;{2} never explored before.