Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 58(34): 5285-5288, 2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35398878

RESUMEN

Liquid crystal oligomers, namely dimers, trimers and tetramers, consisting of cyanobiphenyl and benzylideneaniline-based mesogenic units connected by either linear or bent alkoxy or alkyl spacers are reported. These materials, although built from achiral molecules, show the spontaneously chiral heliconical twist-bend nematic (NTB) phase. We report the relationships between the shape of the oligomer, and the NTB phase stability, the temperature dependence of the helical pitch length and tilt angle, birefringence, and elastic constants.

2.
Phys Rev E ; 102(4-1): 042706, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33212702

RESUMEN

Both ^{1}H and ^{13}C NMR spectra have been obtained in a static magnetic field of 23.5 T on a bent-shaped dimer molecule, 1^{''},7^{''}-bis(4-cyanobiphenyl-4'-yl) nonane (CB9CB), which shows the sequence of liquid crystal phases twist-bend nematic, N_{TB}, and uniaxial nematic, N_{U}, before entering the isotropic phase. The ^{1}H spectra are used to locate the temperature at which the sample melts to form a twist-bend nematic, T_{CrN_{TB}}, and then T_{N_{U}I} when the isotropic phase is entered, both in a magnetic field of 23.5 T, and to compare these with those measured at the Earth's field. The differences between these transition temperatures are found to be zero within the error in their measurement, in stark contrast to previous measurements by Salili et al. [Phys. Rev. Lett. 116, 217801 (2016)10.1103/PhysRevLett.116.217801]. In the isotropic phase in the presence of the field the sample exists in a paranematic phase in which the molecules of CB9CB are partially ordered. The ^{1}H and ^{13}C NMR spectra in the paranematic phase are used to measure the critical temperature T* below which this phase is unstable. The spectra are also used to study the structure, molecular orientational order, and distribution of molecular conformations in the paranematic phase.

3.
Chem Commun (Camb) ; 54(27): 3383-3386, 2018 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-29552681

RESUMEN

The spontaneous formation of a chiral phase via molecular recognition in a system consisting of achiral components is reported. Specifically, the liquid crystalline behaviour of two molecular complexes assembled by hydrogen bonding between a stilbazole-based template and alkoxybenzoic acids has been characterised. The complexes exhibit the heliconical twist-bend nematic phase (NTB) over a broad temperature range despite the hydrogen-bond acceptor not being liquid crystalline and the donor exhibiting the conventional achiral nematic phase.

4.
Phys Rev E ; 94(4-1): 042705, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27841485

RESUMEN

We present studies of chiral nematic liquid crystals composed of flexible dimer molecules subject to large dc magnetic fields between 0 and 31 T. We observe that these fields lead to selective reflection of light depending on temperature and magnetic field. The band of reflected wavelengths can be tuned from ultraviolet to beyond the IR-C band. A similar effect induced by electric fields has been presented previously, and was explained by a field-induced oblique-heliconical director deformation in accordance with early theoretical predictions. The use of magnetic field here instead of electric field allows precise measurements of some material constants and holds promise for wireless tuning of selective reflection.

5.
Artículo en Inglés | MEDLINE | ID: mdl-25019707

RESUMEN

We present magneto-optic measurements on two materials that form the recently discovered twist-bend nematic (N_{tb}) phase. This intriguing state of matter represents a fluid phase that is orientationally anisotropic in three directions and also exhibits translational order with periodicity several times larger than the molecular size. N_{tb} materials may also spontaneously form a visible, macroscopic stripe texture. We show that the optical stripe texture can be persistently inhibited by a magnetic field, and a 25T external magnetic field depresses the N-N_{tb} phase transition temperature by almost 1{∘}C. We propose a quantitative mechanism to account for this shift and suggest a Helfrich-Hurault-type mechanism for the optical stripe formation.


Asunto(s)
Cristales Líquidos/química , Campos Magnéticos , Modelos Químicos , Estructura Molecular , Temperatura de Transición
6.
Nat Commun ; 4: 2635, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24189583

RESUMEN

A state of matter in which molecules show a long-range orientational order and no positional order is called a nematic liquid crystal. The best known and most widely used (for example, in modern displays) is the uniaxial nematic, with the rod-like molecules aligned along a single axis, called the director. When the molecules are chiral, the director twists in space, drawing a right-angle helicoid and remaining perpendicular to the helix axis; the structure is called a chiral nematic. Here using transmission electron and optical microscopy, we experimentally demonstrate a new nematic order, formed by achiral molecules, in which the director follows an oblique helicoid, maintaining a constant oblique angle with the helix axis and experiencing twist and bend. The oblique helicoids have a nanoscale pitch. The new twist-bend nematic represents a structural link between the uniaxial nematic (no tilt) and a chiral nematic (helicoids with right-angle tilt).

7.
J Pharm Sci ; 96(10): 2784-94, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17542017

RESUMEN

A high pressure differential scanning calorimeter (HP-DSC) has been used to investigate the pressure dependence of the melting of the monoclinic (Form I) and orthorhombic (Form II) polymorphs of paracetamol (acetaminophen). DSC scans obtained at ambient pressure show that the stable monoclinic form melts at 442 K while the metastable orthorhombic form melts at 430 K. HP-DSC scans obtained for pressures up to about 450 MPa show that the melting temperatures of both Forms I and II increase with increasing pressure, but the latter more rapidly than the former. This results in a cross-over at about 250 MPa, where the two forms have approximately the same melting temperature, while at higher pressures Form II becomes the more stable phase. Although no solid-solid transitions have been observed, the coordinates of the I-II-liquid triple point have been found experimentally (p = 258.7 MPa and T = 489.6 K) for the first time, and confirm those predicted by Espeau et al. from a topological p-T diagram based on theoretical arguments and experimental data at ambient pressure.


Asunto(s)
Acetaminofén/química , Analgésicos no Narcóticos/química , Rastreo Diferencial de Calorimetría , Tecnología Farmacéutica/métodos , Cristalización , Estabilidad de Medicamentos , Modelos Químicos , Transición de Fase , Presión , Temperatura de Transición
8.
Ann Rheum Dis ; 64(2): 222-5, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15647430

RESUMEN

BACKGROUND: Cancellous bone from patients with osteoarthritis (OA) has been reported to be undermineralised and that from patients with osteoporosis (OP) is more liable to fracture. Changes in the mineral component might be implicated in these processes. OBJECTIVES: To investigate the thermal stability and the mineral structure of cancellous bone from femoral heads of patients with either OA or OP. METHODS: Powdered bone was prepared from femoral heads of patients with either OA or OP and a control group. Composition and thermal stability were determined using a thermogravimetric analyser coupled to a mass spectrometer. Unit cell dimensions and the crystallite size of the mineral were measured using x ray diffraction. RESULTS: Thermal stability of the bone matrix, or of the mineral phase alone, was little altered by disease, though OA bone contained less mineral than OP or control bone. In all three groups, x ray diffraction showed that the mineral unit cell dimensions and crystallite sizes were the same. The mean carbonate content in the mineral from all three groups was between 7.2 and 7.6% and is suggested to be located in both the A site (that is, substituting for hydroxyl groups), and the B site (that is, substituting for phosphate groups). CONCLUSIONS: These results confirm that there is a lower mass fraction of mineral in OA bone, and indicate that the nature of the mineral is not a factor in either disease process.


Asunto(s)
Cabeza Femoral/química , Minerales/análisis , Osteoartritis de la Cadera/metabolismo , Osteoporosis/metabolismo , Anciano , Anciano de 80 o más Años , Carbonatos/análisis , Femenino , Calor , Humanos , Masculino , Persona de Mediana Edad , Termogravimetría/métodos , Difracción de Rayos X/métodos
9.
Soft Matter ; 1(5): 355-363, 2005 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-32646102

RESUMEN

Hierarchical ordering in a side group liquid crystal block copolymer is investigated by differential scanning calorimetry, polarized optical microscopy, small-angle X-ray and neutron scattering (SAXS and SANS) and transmission electron microscopy (TEM). A series of block copolymers with a range of compositions was prepared by atom transfer radical polymerization, comprising a polystyrene block and a poly(methyl methacrylate) block bearing chiral cholesteryl mesogens. Smectic ordering is observed as well as microphase separation of the block copolymer. Lamellar structures were observed for far larger volume fractions than for coil-coil copolymers (up to a volume fraction of liquid crystal block, = 0.8). A sample with = 0.86 exhibited a hexagonal-packed cylinder morphology, as confirmed by SAXS and TEM. The matrix comprised the liquid crystal block, with the mesogens forming smectic layers. For the liquid crystal homopolymer and samples with high , a smectic-smectic phase transition was observed below the clearing point. At low temperature, the smectic phase comprises coexisting domains with monolayer S coexisting with interdigitated S domains. At high temperature a S phase is observed. This is the only structure observed for samples with lower . These unprecedented results point to the influence of block copolymer microphase separation on the smectic ordering.

10.
Calcif Tissue Int ; 75(4): 321-8, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15549647

RESUMEN

Thermogravimetric analysis linked to mass spectrometry (TGA-MS) shows changes in mass and identifies gases evolved when a material is heated. Heating to 600 degrees C enabled samples of bone to be classified as having a high (cod clythrum, deer antler, and whale periotic fin bone) or a low (porpoise ear bone, whale tympanic bulla, and whale ear bone) proportion of organic material. At higher temperatures, the mineral phase of the bone decomposed. High temperature X-ray diffraction (HTXRD) showed that the main solids produced by decomposition of mineral (in air or argon at 800 degrees C to 1000 degrees C) were beta-tricalcium phosphate (TCP) and hydroxyapatite (HAP), in deer antler, and CaO and HAP, in whale tympanic bulla. In carbon dioxide, the decomposition was retarded, indicating that the changes observed in air and argon were a result of the loss of carbonate ions from the mineral. Fourier transform infrared (FTIR) spectroscopy of bones heated to different temperatures, showed that loss of carbon dioxide (as a result of decomposition of carbonate ions) was accompanied by the appearance of hydroxide ions. These results can be explained if the structure of bone mineral is represented by [Formula: see text] where V(Ca) and V(OH) correspond to vacancies on the calcium and hydroxide sites, respectively, and 2-x-y = 0.4. This general formula is consistent in describing both mature bone mineral (i.e., whale bone), with a high Ca/P molar ratio, lower HPO4(2-) content, and higher CO3(2-) content, and immature bone mineral (i.e., deer antler), with a low Ca/P ratio, higher HPO4(2-), and lower CO3(2-) content.


Asunto(s)
Densidad Ósea , Huesos/química , Compuestos Orgánicos/análisis , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Difracción de Rayos X/métodos , Animales , Ciervos , Gadiformes , Calor , Especificidad de la Especie , Termogravimetría , Ballenas
11.
J Microsc ; 211(Pt 1): 63-6, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12839552

RESUMEN

The infrared beam on both the main Nicolet Nexus bench and the attached Spectra-Tech Continuum microscope has been shown to be partially polarized. The degree of polarization is approximately 30%. Although the state of polarization of the infrared beam is of no consequence when measuring the spectra of isotropic materials (gases, liquids), there is a potential problem when considering the spectra of anisotropic materials. Single band intensities are particularly prone to error as small changes in sample thickness or orientation directly affect the intensity. Thickness effects can be overcome by measuring intensity ratios. However, because of the partially polarized nature of the infrared beam, even intensity ratios, illustrated here by the ratio amide I/II of collagen fibres, vary with sample orientation. If overlooked, this effect can be problematic when measuring infrared spectra with an FTIR microscope from samples that are anisotropic or contain anisotropic domains, even though they may appear isotropic on a macroscopic scale. Because dichroic ratios remain unaffected, the intensity ratio from two bands with different transition moments may be used to give a strong indication of the orientation of the sample. This work is illustrated by reference to the FTIR spectra of orientated polyethylene, collagen tape and human trabecular bone.


Asunto(s)
Artefactos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Amidas/química , Anisotropía , Huesos/ultraestructura , Colágeno/análisis , Microscopía de Polarización , Espectrofotometría Ultravioleta/métodos
12.
J Mater Sci Mater Med ; 14(9): 783-7, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15348398

RESUMEN

Poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogels have been used, or suggested for use, in a wide range of biomedical applications. In many of these applications, the mechanical properties of the gel are important for its proper functioning. These properties are influenced by a number of factors, including water content. In this study the storage and loss shear moduli were measured as a function of frequency for gels with water contents ranging from 22% to 48% at a temperature of 37 degrees C. At low frequencies and high water contents, deformation frequency had little effect. However, at higher frequencies and lower water contents, both moduli increased markedly with increasing frequency. This can be explained by the gels approaching a glass transition. The curves describing the behavior of each gel were combined to form a master curve, using a method analogous to the time-temperature superposition principle. This master curve can be used to predict the shear moduli for gels with a wide range of water contents and loading frequencies. For example, for a gel with a water content of 47.8% (as a percentage of the mass of gel), the curve provides shear moduli values over a frequency range of 10(-2)-10(4) Hz.

13.
J Mater Sci Mater Med ; 14(1): 9-15, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15348533

RESUMEN

The influence of water on the physical properties of a hydrogel is important for understanding natural tissues and in designing synthetic materials to replace them. In this study, poly (2-hydroxyethyl methacrylate) (pHEMA) was used as a model system to understand how water interacts with the polymer of a hydrogel. Thermal analysis methods (thermogravimetric analysis coupled to mass spectrometry and differential scanning calorimetry) were used to determine: (i) the total water content of pHEMA gels; (ii) how this water was lost during heating; (iii) the relationship between water content of the gel and its glass transition temperature; and (iv) the behavior of the water in the gel on cooling. Previous researchers have invoked various models to describe the organization of water in a hydrogel. In this study, the simplest model which could explain all of the results from the different thermal analysis techniques was one which consisted of three classes of water: (i) hydration water in close proximity to the polymer; (ii) interstitial water in regions or cavities surrounded by polymer chains; and (iii) bulk water.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...