Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 26(9)2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33919174

RESUMEN

Adsorption of carbon dioxide and methane in porous activated carbon and carbon nanotube was studied experimentally and by Grand Canonical Monte Carlo (GCMC) simulation. A gravimetric analyzer was used to obtain the experimental data, while in the simulation we used graphitic slit pores of various pore size to model activated carbon and a bundle of graphitic cylinders arranged hexagonally to model carbon nanotube. Carbon dioxide was modeled as a 3-center-Lennard-Jones (LJ) molecule with three fixed partial charges, while methane was modeled as a single LJ molecule. We have shown that the behavior of adsorption for both activated carbon and carbon nanotube is sensitive to pore width and the crossing of isotherms is observed because of the molecular packing, which favors commensurate packing for some pore sizes. Using the adsorption data of pure methane or carbon dioxide on activated carbon, we derived its pore size distribution (PSD), which was found to be in good agreement with the PSD obtained from the analysis of nitrogen adsorption data at 77 K. This derived PSD was used to describe isotherms at other temperatures as well as isotherms of mixture of carbon dioxide and methane in activated carbon and carbon nanotube at 273 and 300 K. Good agreement between the computed and experimental isotherm data was observed, thus justifying the use of a simple adsorption model.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...