Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ann Bot ; 107(9): 1545-56, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21441246

RESUMEN

BACKGROUND: Gene duplication has often been invoked as a key mechanism responsible for evolution of new morphologies. The floral homeotic B-group gene family has undergone a number of gene duplication events, and yet the functions of these genes appear to be largely conserved. However, detailed comparative analysis has indicated that such duplicate genes have considerable cryptic variability in their functions. In the Solanaceae, two duplicate B-group gene lineages have been retained in three subfamilies. Comparisons of orthologous genes across members of the Solanaceae have demonstrated that the combined function of all four B-gene members is to establish petal and stamen identity, but that this function was partitioned differently in each species. These observations emphasize both the robustness and the evolvability of the B-system. SCOPE: We provide an overview of how the B-function genes can robustly specify petal and stamen identity and at the same time evolve through changes in protein-protein interaction, gene expression patterns, copy number variation or alterations in the downstream genes they control. By using mathematical models we explore regulatory differences between species and how these impose constraints on downstream gene regulation. CONCLUSIONS: Evolvability of the B-genes can be understood through the multiple ways in which the B-system can be robust. Quantitative approaches should allow for the incorporation of more biological realism in the representations of these regulatory systems and this should contribute to understanding the constraints under which different B-systems can function and evolve. This, in turn, can provide a better understanding of the ways in which B-genes have contributed to flower diversity.


Asunto(s)
Flores/genética , Duplicación de Gen/genética , Genes de Plantas/genética , Solanaceae/genética , Simulación por Computador , Variaciones en el Número de Copia de ADN/genética , Evolución Molecular , Flores/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Genes Homeobox/genética , Proteínas de Dominio MADS/genética , Modelos Biológicos , Fenotipo , Filogenia , Mapeo de Interacción de Proteínas , Solanaceae/crecimiento & desarrollo
2.
Curr Opin Genet Dev ; 11(4): 424-30, 2001 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-11448629

RESUMEN

It is clear that cell-cell signaling is critical for the development of both root and shoot structures. Recently, several of the key gene products required for intercellular signaling have been defined, and the developmental processes regulated by cell-cell interactions are beginning to be elucidated. Surprisingly, these results suggest that the mechanisms by which plant cells communicate with each other may be quite distinct from those used in animal systems.


Asunto(s)
Genes de Plantas/fisiología , Plantas/embriología , Transducción de Señal/fisiología , Animales , Diferenciación Celular , Linaje de la Célula/fisiología , Desarrollo Embrionario y Fetal , Meristema/citología , Morfogénesis , Células Vegetales , Plantas/genética
3.
Development ; 128(1): 13-23, 2001 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11092807

RESUMEN

Cell-cell signaling is crucial for the coordination of cell division and differentiation during plant organogenesis. We have developed a novel mosaic analysis method for Arabidopsis, based on the maize Ac/Ds transposable element system, to assess the requirements of individual genes in intercellular signaling. Using this strategy, we have shown that the floral homeotic APETALA3 (AP3) gene has distinct roles in regulating intercellular signaling in different tissues. In petals, AP3 acts primarily in a cell-autonomous fashion to regulate cell type differentiation, but its function is also required in a non-cell-autonomous fashion to regulate organ shape. In contrast, AP3-regulated intercellular interactions are required for conferring both cell type identity and organ shape and size in the stamens. Using antibodies raised against AP3, we have shown that the AP3 protein does not traffic between cells. These observations imply that AP3 acts by differentially regulating the production of intercellular signals in a whorl-specific manner.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética , Proteínas de Dominio MADS , Transducción de Señal/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Plantas/genética
4.
Development ; 127(6): 1267-76, 2000 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-10683179

RESUMEN

The shoot apical meristem of Arabidopsis thaliana consists of three cell layers that proliferate to give rise to the aerial organs of the plant. By labeling cells in each layer using an Ac-based transposable element system, we mapped their contributions to the floral organs, as well as determined the degree of plasticity in this developmental process. We found that each cell layer proliferates to give rise to predictable derivatives: the L1 contributes to the epidermis, the stigma, part of the transmitting tract and the integument of the ovules, while the L2 and L3 contribute, to different degrees, to the mesophyll and other internal tissues. In order to test the roles of the floral homeotic genes in regulating these patterns of cell proliferation, we carried out similar clonal analyses in apetala3-3 and agamous-1 mutant plants. Our results suggest that cell division patterns are regulated differently at different stages of floral development. In early floral stages, the pattern of cell divisions is dependent on position in the floral meristem, and not on future organ identity. Later, during organogenesis, the layer contributions to the organs are controlled by the homeotic genes. We also show that AGAMOUS is required to maintain the layered structure of the meristem prior to organ initiation, as well as having a non-autonomous role in the regulation of the layer contributions to the petals.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Genes Homeobox , Genes de Plantas , Arabidopsis/citología , División Celular/genética , Regulación del Desarrollo de la Expresión Génica , Glucuronidasa/genética , Glucuronidasa/metabolismo , Meristema/citología , Meristema/crecimiento & desarrollo , Mutación , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas
5.
Genome Biol ; 1(2): REVIEWS1015, 2000.
Artículo en Inglés | MEDLINE | ID: mdl-11178237

RESUMEN

A recent study, comparing the maize SILKY1 gene to its well-characterized homolog APETALA3 from Arabidopsis, has provided some of the first evidence pointing to conservation of homeotic gene function between monocots and dicots.


Asunto(s)
Evolución Biológica , Genes Homeobox/genética , Genes de Plantas/genética , Estructuras de las Plantas/crecimiento & desarrollo , Estructuras de las Plantas/genética , Arabidopsis/genética , Arabidopsis/fisiología , Secuencia Conservada , Genes Homeobox/fisiología , Genes de Plantas/fisiología , Morfogénesis/genética , Filogenia , Zea mays/genética , Zea mays/fisiología
6.
Trends Genet ; 15(11): 435-7, 1999 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-10529802

RESUMEN

The complete sequence of the Arabidopsis genome is scheduled to be determined by the end of the year 2000. While this goal could prove to be something of a moving target (the estimated size of the genome has grown from 120 Mb to 130 Mb over the last year1), it is clear that the majority of genes required for higher plant growth, reproduction and development will have been described within this time frame. Some of the implications of this landmark achievement are already becoming clear, even though less than a half of the genome has been sequenced.


Asunto(s)
Arabidopsis/genética , Duplicación de Gen , Genes de Plantas , Genoma de Planta , Arabidopsis/crecimiento & desarrollo , Mapeo Cromosómico , Regulación del Desarrollo de la Expresión Génica , Genes Homeobox , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología
7.
Plant J ; 19(3): 259-68, 1999 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-10476073

RESUMEN

The normal development of shoot structures depends on controlling the growth, proliferation and differentiation of cells derived from the shoot apical meristem. We have identified the CYP78A5 gene encoding a putative cytochrome P450 monooxygenase that is the first member of the CYP78 family from Arabidopsis. This gene is strongly expressed in the peripheral regions of the vegetative and reproductive shoot apical meristems, defining a boundary between the central meristematic zone and the developing organ primordia. In addition, CYP78A5 shows a dynamic pattern of expression during floral development. Overexpression of CYP78A5 affects multiple cell types, causing twisting and kinking of the stem and defects in floral development. To define the relationship of CYP78A5 to genes controlling meristem function, we examined CYP78A5 expression in plants mutant for SHOOT MERISTEMLESS, ZWILLE and ARGONAUTE, and have found that CYP78A5 expression is altered in these mutant backgrounds. We propose that CYP78A5 has a role in regulating directional growth in the peripheral region of the shoot apical meristem in response to cues established by genes regulating meristem function.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Sistema Enzimático del Citocromo P-450/genética , Genes de Plantas , Secuencia de Aminoácidos , Arabidopsis/citología , Secuencia de Bases , Clonación Molecular , ADN de Plantas/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hibridación in Situ , Meristema/citología , Meristema/crecimiento & desarrollo , Microscopía Electrónica de Rastreo , Datos de Secuencia Molecular , Mutación , Fenotipo , Plantas Modificadas Genéticamente
8.
Nature ; 399(6732): 144-8, 1999 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-10335842

RESUMEN

Molecular genetic studies in Arabidopsis thaliana and other higher-eudicot flowering plants have led to the development of the 'ABC' model of the determination of organ identity in flowers, in which three classes of gene, A, B and C, are thought to work together to determine organ identity. According to this model, the B-class genes APETALA3 (AP3) and PISTILLATA (PI) act to specify petal and stamen identity. Here we test whether the roles of these genes are conserved throughout the angiosperms by analysing the expression of AP3 and PI orthologues in the lower eudicot subclass Ranunculidae. We show that, although expression of these orthologues in the stamens is conserved, the expression patterns in the petals differ from those found in the higher eudicots. The differences between these expression patterns suggest that the function of AP3 and PI homologues as B-class organ-identity genes is not rigidly conserved among all angiosperms. These observations have important implications for understanding the evolution of both angiosperm petals and the genetic mechanisms that control the identities of floral organs.


Asunto(s)
Proteínas de Arabidopsis , Evolución Molecular , Genes de Plantas , Proteínas de Dominio MADS , Magnoliopsida/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Northern Blotting , Southern Blotting , Clonación Molecular , Expresión Génica , Proteínas de Homeodominio/genética , Magnoliopsida/clasificación , Magnoliopsida/crecimiento & desarrollo , Modelos Biológicos , Datos de Secuencia Molecular , Filogenia , Estructuras de las Plantas/crecimiento & desarrollo , Factores de Transcripción/genética
10.
Curr Top Dev Biol ; 41: 133-61, 1999.
Artículo en Inglés | MEDLINE | ID: mdl-9784975

RESUMEN

Analyses of petal and stamen development are beginning to illuminate the molecular genetic processes that are required to elaborate these organ types. Floral homeotic genes are required to specify certain organ identities, and these functions also are required throughout organogenesis. These genes, either directly or indirectly, presumably control a wide array of tissue- and cell-type-specific differentiation processes. At least part of this repertoire seems to include the regulation of cell proliferation, coupling the specification of organ identity with changes in growth dynamics in different regions of the developing flower. Furthermore, cells have an enormous amount of developmental plasticity, which means that they have to be able to integrate multiple sources of information as they terminally differentiate. Some of the identified inputs include the position of the cell in the developing organ, the status of gene expression and epigenetic information, and environmental signals. How this information is disseminated between cells is largely unknown. Not only do individual cells need to respond to this information, but fields of cells must coordinate their differentiation to form a functionally complex structure. The challenge that is before us is to understand how this plasticity of response is regulated to give a reproducible and species-specific pattern of differentiated tissues.


Asunto(s)
Estructuras de las Plantas/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Epidermis de la Planta/citología , Estructuras de las Plantas/genética , Reproducción/genética
11.
Genetics ; 149(2): 765-83, 1998 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-9611190

RESUMEN

The specification of floral organ identity in the higher dicots depends on the function of a limited set of homeotic genes, many of them members of the MADS-box gene family. Two such genes, APETALA3 (AP3) and PISTILLATA (PI), are required for petal and stamen identity in Arabidopsis; their orthologs in Antirrhinum exhibit similar functions. To understand how changes in these genes may have influenced the morphological evolution of petals and stamens, we have cloned twenty-six homologs of the AP3 and PI genes from two higher eudicot and eleven lower eudicot and magnolid dicot species. The sequences of these genes reveal the presence of characteristic PI- and AP3-specific motifs. While the PI-specific motif is found in all of the PI genes characterized to date, the lower eudicot and magnolid dicot AP3 homologs contain distinctly different motifs from those seen in the higher eudicots. An analysis of all the available AP3 and PI sequences uncovers multiple duplication events within each of the two gene lineages. A major duplication event in the AP3 lineage coincides with the base of the higher eudicot radiation and may reflect the evolution of a petal-specific AP3 function in the higher eudicot lineage.


Asunto(s)
Proteínas de Arabidopsis , Evolución Molecular , Genes de Plantas , Proteínas de Homeodominio/genética , Proteínas de Dominio MADS , Familia de Multigenes , Proteínas de Plantas/genética , Estructuras de las Plantas/crecimiento & desarrollo , Estructuras de las Plantas/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Solanum lycopersicum/genética , Datos de Secuencia Molecular , Papaver/genética , Filogenia , Plantas Medicinales , Alineación de Secuencia , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido
12.
Development ; 125(9): 1711-21, 1998 May.
Artículo en Inglés | MEDLINE | ID: mdl-9521909

RESUMEN

The APETALA3 floral homeotic gene is required for petal and stamen development in Arabidopsis. APETALA3 transcripts are first detected in a meristematic region that will give rise to the petal and stamen primordia, and expression is maintained in this region during subsequent development of these organs. To dissect how the APETALA3 gene is expressed in this spatially and temporally restricted domain, various APETALA3 promoter fragments were fused to the uidA reporter gene encoding beta-glucuronidase and assayed for the resulting patterns of expression in transgenic Arabidopsis plants. Based on these promoter analyses, we defined cis-acting elements required for distinct phases of APETALA3 expression, as well as for petal-specific and stamen-specific expression. By crossing the petal-specific construct into different mutant backgrounds, we have shown that several floral genes, including APETALA3, PISTILLATA, UNUSUAL FLORAL ORGANS, and APETALA1, encode trans-acting factors required for second-whorl-specific APETALA3 expression. We have also shown that the products of the APETALA1, APETALA3, PISTILLATA and AGAMOUS genes bind to several conserved sequence motifs within the APETALA3 promoter. We present a model whereby spatially and temporally restricted APETALA3 transcription is controlled via interactions between proteins binding to different domains of the APETALA3 promoter.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Genes Homeobox/genética , Proteínas de Homeodominio/genética , Proteínas de Dominio MADS , Regiones Promotoras Genéticas/genética , Secuencia de Bases , ADN de Plantas/metabolismo , Genes de Plantas/genética , Genes Reporteros , Glucuronidasa/genética , Datos de Secuencia Molecular , Plantas Modificadas Genéticamente , Unión Proteica , Homología de Secuencia de Ácido Nucleico , Transactivadores/metabolismo , Transcripción Genética/genética , Activación Transcripcional/genética
13.
Planta ; 201(2): 179-88, 1997.
Artículo en Inglés | MEDLINE | ID: mdl-9084216

RESUMEN

Brassica oleracea L. vars, italica (broccoli) and botrytis (cauliflower) both undergo developmental arrests which result in heading phenotypes. We characterized these arrested tissues at the morphological and molecular levels, and defined the developmental changes that ensure after arrest has been broken. We found that the order of floral organ initiation and the positions of resulting floral organ primordia in this species in some respects from that of Arabidopsis, which is a member of the same family, Brassicaceae. We also cloned homologs of the Arabidopsis floral homeotic genes APETALA1 (AP1) and APETALA3 (AP3) from B. oleracea and characterized their expression patterns. We found that the AP1 homolog was expressed in some of the meristems of arrest-stage cauliflower, providing evidence that this tissue is florally determined. In broccoli, both the AP1 and AP3 homologs were expressed. However, the spatial pattern of expression of the broccoli AP1 homolog differed from that of Arabidopsis. In addition we identified a homolog of the CAULIFLOWER (CAL) gene, BoiCAL, from broccoli. The predicted amino acid sequence indicated that the BoiCAL gene product does not contain the mutation thought to be responsible for the early arrest exhibited in cauliflower (Kempin et al. 1995), but contains other changes that might play a role in the broccoli heading phenotype.


Asunto(s)
Proteínas de Arabidopsis , Brassica/genética , Genes Homeobox , Genes de Plantas , Proteínas de Dominio MADS , Secuencia de Aminoácidos , Secuencia de Bases , Brassica/crecimiento & desarrollo , Brassica/ultraestructura , ADN de Plantas , Proteínas de Unión al ADN/genética , Expresión Génica , Proteínas de Homeodominio/genética , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Homología de Secuencia de Aminoácido
14.
Genes Dev ; 10(14): 1812-21, 1996 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-8698240

RESUMEN

The Arabidopsis APETALA3 (AP3) and PISTILLATA (PI) proteins are thought to act as transcription factors and are required for specifying floral organ identities. To define the nuclear localization signals within these proteins, we generated translational fusions of the coding regions of AP3 and PI to the bacterial uidA gene that encodes beta-glucuronidase (GUS). Transient transformation assays of either the AP3-GUS or PI-GUS fusion protein alone resulted in cytoplasmic localization of GUS activity. However, coexpression of AP3-GUS with PI, or PI-GUS with AP3, resulted in nuclear localization of GUS activity. Stable transformation with these fusion proteins in Arabidopsis showed similar results. The nuclear colocalization signals in AP3 and PI were mapped to the amino-terminal regions of each protein. These observations suggest that the interaction of the AP3 and PI gene products results in the formation of a protein complex that generates or exposes a colocalization signal required to translocate the resulting complex into the nucleus. The colocalization phenomenon that we have described represents a novel mechanism to coordinate the functions of transcription factors within the nucleus.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas de Dominio MADS , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/crecimiento & desarrollo , Núcleo Celular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes Homeobox , Genes de Plantas , Proteínas de Homeodominio/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factores de Transcripción/genética
15.
Dev Biol ; 174(1): 22-31, 1996 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-8626018

RESUMEN

Flowers develop from the coordinated division and differentiation of cells derived from the shoot apical meristem. By inducing chromosomal deletions in individual shoot apical meristem cells, we have generated Arabidopsis plants that are genetically mosaic for the homeotic PISTILLATA gene. Flowers bearing wild-type PISTILLATA epidermal tissue and mutant pistillata internal tissues are phenotypically normal. Based on this non-cell-autonomy, we suggest that PISTILLATA controls the production of a substance involved in cell-cell communication between the outer and inner tissue layers of the flower. These mosaic flowers were also used to assess the relative contributions of meristematic cells to the developing floral organs. These observations indicate that meristematic cells have discrete but somewhat variable contributions to the Arabidopsis flower. We have used these results to construct a fate map of the Arabidopsis floral primordium.


Asunto(s)
Proteínas de Arabidopsis , Genes Homeobox , Proteínas de Homeodominio/genética , Proteínas de Dominio MADS , Factores de Transcripción/genética , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Morfogénesis , Mosaicismo , Proteínas de Plantas/fisiología , ARN Mensajero/genética
16.
Plant Cell ; 7(10): 1635-44, 1995 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-7580255

RESUMEN

Several homeotic genes controlling floral development have been isolated in both Antirrhinum and Arabidopsis. Based on the similarities in sequence and in the phenotypes elicited by mutations in some of these genes, it has been proposed that the regulatory hierarchy controlling floral development is comparable in these two species. We have performed a direct experimental test of this hypothesis by introducing a chimeric Antirrhinum Deficiens (DefA)/Arabidopsis APETALA3 (AP3) gene, under the control of the Arabidopsis AP3 promoter, into Arabidopsis. We demonstrated that this transgene is sufficient to partially complement severe mutations at the AP3 locus. In combination with a weak ap3 mutation, this transgene is capable of completely rescuing the mutant phenotype to a fully functional wild-type flower. These observations indicate that despite differences in DNA sequence and expression, DefA coding sequences can compensate for the loss of AP3 gene function. We discuss the implications of these results for the evolution of homeotic gene function in flowering plants.


Asunto(s)
Arabidopsis/genética , Genes Homeobox , Genes de Plantas , Plantas/genética , Arabidopsis/crecimiento & desarrollo , Secuencia de Bases , Evolución Biológica , Quimera/genética , Clonación Molecular , Secuencia Conservada , ADN Complementario/genética , ADN de Plantas/genética , Microscopía Electrónica de Rastreo , Datos de Secuencia Molecular , Mutación , Fenotipo , Desarrollo de la Planta , Plantas/ultraestructura , Plantas Modificadas Genéticamente
17.
Development ; 121(9): 2887-95, 1995 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-7555715

RESUMEN

Two models have been proposed to explain the coordinated development of the four whorls of floral organs. The spatial model predicts that positional information defines the four whorls simultaneously, and that individual organs develop independently of surrounding tissues. The sequential model suggests that inductive events between the outer and inner whorl primordia are required for appropriate organogenesis. To test these models we have genetically ablated second and third whorl floral organ primordia to determine if organ identity, number or position are perturbed in the first or fourth whorls. We used diphtheria toxin to specifically ablate floral cells early in development in Nicotiana tabacum and in Arabidopsis thaliana. Second and third whorl expression of the diphtheria toxin A chain coding sequence (DTA) was conferred by the Arabidopsis APETALA3 (AP3) promoter. Both Nicotiana and Arabidopsis flowers that express the AP3-DTA construct lack petals and stamens; it appears that the second and third whorl cells expressing this construct arrest early in floral development. These results show that first and fourth whorl development is normal and can proceed without information from adjacent second and third whorl primordia. We propose that positional information specifies the establishment of all four whorls of organs prior to the expression of AP3 in the floral meristem.


Asunto(s)
Comunicación Celular , Genes de Plantas , Meristema/fisiología , Modelos Biológicos , Secuencia de Aminoácidos , Arabidopsis/genética , Toxina Diftérica/farmacología , Meristema/efectos de los fármacos , Datos de Secuencia Molecular , Plantas Tóxicas , Nicotiana/genética
19.
Curr Opin Cell Biol ; 3(6): 983-7, 1991 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-1814369

RESUMEN

Lineage analyses in several plant species demonstrate that meristematic cells proliferate in a predictable manner to form the differentiated tissues of the mature shoot system. These studies also demonstrate, however, that the fates of meristematic cells are not absolutely dependent on their lineage. This variability indicates that interactions between cells must play a role in morphogenesis.


Asunto(s)
Diferenciación Celular , Morfogénesis , Plantas/embriología , Semillas , Zea mays
20.
Curr Opin Genet Dev ; 1(2): 169-73, 1991 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-1822266

RESUMEN

Lineage analyses in several plant species demonstrate that meristematic cells proliferate in a predictable manner to form the differentiated tissues of the mature shoot system. These studies also demonstrate, however, that the fates of meristematic cells are not absolutely dependent on their lineage. This variability indicates that interactions between cells must play a role in morphogenesis.


Asunto(s)
Desarrollo de la Planta , Células Madre/citología , Diferenciación Celular , Morfogénesis , Células Vegetales , Plantas/embriología , Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...