Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuron ; 112(2): 247-263.e6, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-37924811

RESUMEN

Oligodendrocytes are the primary producers of many extracellular matrix (ECM)-related proteins found in the CNS. Therefore, oligodendrocytes play a critical role in the determination of brain stiffness, node of Ranvier formation, perinodal ECM deposition, and perineuronal net formation, all of which depend on the ECM. Nevertheless, the transcription factors that control ECM-related gene expression in oligodendrocytes remain unknown. Here, we found that the transcription factor Osterix (also known as Sp7) binds in proximity to genes important for CNS ECM and node of Ranvier formation and mediates their expression. Oligodendrocyte-specific ablation of Sp7 changes ECM composition and brain stiffness and results in aberrant node of Ranvier formation. Sp7 is known to control osteoblast maturation and bone formation. Our comparative analyses suggest that Sp7 plays a conserved biological role in oligodendrocytes and in bone-forming cells, where it mediates brain and bone tissue stiffness by controlling expression of ECM components.


Asunto(s)
Oligodendroglía , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Oligodendroglía/fisiología , Matriz Extracelular/metabolismo , Huesos/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Expresión Génica
2.
Cell Rep ; 40(3): 111130, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35858549

RESUMEN

Peripheral nervous system (PNS) injuries initiate transcriptional changes in glial cells and sensory neurons that promote axonal regeneration. While the factors that initiate the transcriptional changes in glial cells are well characterized, the full range of stimuli that initiate the response of sensory neurons remain elusive. Here, using a genetic model of glial cell ablation, we find that glial cell loss results in transient PNS demyelination without overt axonal loss. By profiling sensory ganglia at single-cell resolution, we show that glial cell loss induces a transcriptional injury response preferentially in proprioceptive and Aß RA-LTMR neurons. The transcriptional response of sensory neurons to mechanical injury has been assumed to be a cell-autonomous response. By identifying a similar response in non-injured, demyelinated neurons, our study suggests that this represents a non-cell-autonomous transcriptional response of sensory neurons to glial cell loss and demyelination.


Asunto(s)
Enfermedades Desmielinizantes , Neuroglía , Humanos , Neuroglía/fisiología , Sistema Nervioso Periférico , Células Receptoras Sensoriales
3.
RNA Biol ; 19(1): 333-352, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35220879

RESUMEN

Latent 5' splice sites, not normally used, are highly abundant in human introns, but are activated under stress and in cancer, generating thousands of nonsense mRNAs. A previously proposed mechanism to suppress latent splicing was shown to be independent of NMD, with a pivotal role for initiator-tRNA independent of protein translation. To further elucidate this mechanism, we searched for nuclear proteins directly bound to initiator-tRNA. Starting with UV-crosslinking, we identified nucleolin (NCL) interacting directly and specifically with initiator-tRNA in the nucleus, but not in the cytoplasm. Next, we show the association of ini-tRNA and NCL with pre-mRNA. We further show that recovery of suppression of latent splicing by initiator-tRNA complementation is NCL dependent. Finally, upon nucleolin knockdown we show activation of latent splicing in hundreds of coding transcripts having important cellular functions. We thus propose nucleolin, a component of the endogenous spliceosome, through its direct binding to initiator-tRNA and its effect on latent splicing, as the first protein of a nuclear quality control mechanism regulating splice site selection to protect cells from latent splicing that can generate defective mRNAs.


Asunto(s)
Sitios de Unión , Fosfoproteínas/metabolismo , Sitios de Empalme de ARN , Empalme del ARN , Proteínas de Unión al ARN/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Espectrometría de Masas , Unión Proteica , Interferencia de ARN , ARN de Transferencia/genética , Nucleolina
4.
Cell Rep ; 23(8): 2254-2263, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29791837

RESUMEN

Zinc finger protein ZFP24, formerly known as ZFP191, is essential for oligodendrocyte maturation and CNS myelination. Nevertheless, the mechanism by which ZFP24 controls these processes is unknown. We demonstrate that ZFP24 binds to a consensus DNA sequence in proximity to genes important for oligodendrocyte differentiation and CNS myelination, and we show that this binding enhances target gene expression. We also demonstrate that ZFP24 DNA binding is controlled by phosphorylation. Phosphorylated ZFP24, which does not bind DNA, is the predominant form in oligodendrocyte progenitor cells. As these cells mature into oligodendrocytes, the non-phosphorylated, DNA-binding form accumulates. Interestingly, ZFP24 displays overlapping genomic binding sites with the transcription factors MYRF, SOX10, and OLIG2, which are known to control oligodendrocyte differentiation. Our findings provide a mechanism by which dephosphorylation of ZFP24 mediates its binding to regulatory regions of genes important for oligodendrocyte maturation, controls their expression, and thereby regulates oligodendrocyte differentiation and CNS myelination.


Asunto(s)
Proteínas Portadoras/metabolismo , Diferenciación Celular , Oligodendroglía/citología , Oligodendroglía/metabolismo , Alanina/genética , Animales , Secuencia de Bases , Linaje de la Célula , ADN/metabolismo , Células HEK293 , Humanos , Ratones Endogámicos C57BL , Fosforilación , Unión Proteica , Ratas
6.
Mol Cancer ; 14: 167, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26370283

RESUMEN

BACKGROUND: The SWI/SNF ATP dependent chromatin remodeling complex is a multi-subunit complex, conserved in eukaryotic evolution that facilitates nucleosomal re-positioning relative to the DNA sequence. In recent years the SWI/SNF complex has emerged to play a role in cancer development as various sub-units of the complex are found to be mutated in a variety of tumors. One core-subunit of the complex, which has been well established as a tumor suppressor gene is SMARCB1 (SNF5/INI1/BAF47). Mutation and inactivation of SMARCB1 have been identified as the underlying mechanism leading to Malignant Rhabdoid Tumors (MRT) and Atypical Teratoid/Rhabdoid Tumors (AT/RT), two highly aggressive forms of pediatric neoplasms. METHODS: We present a phosphoproteomic study of Smarcb1 dependent changes in signaling networks. The SILAC (Stable Isotopic Labeling of Amino Acids in Cell Culture) protocol was used to quantify in an unbiased manner any changes in the phosphoproteomic profile of Smarcb1 deficient murine rhabdoid tumor cell lines following Smarcb1 stable re-expression and under different serum conditions. RESULTS: This study illustrates broad changes in the regulation of multiple biological networks including cell cycle progression, chromatin remodeling, cytoskeletal regulation and focal adhesion. Specifically, we identify Smarcb1 dependent changes in phosphorylation and expression of the EGF receptor, demonstrate downstream signaling and show that inhibition of EGFR signaling specifically hinders the proliferation of Smarcb1 deficient cells. CONCLUSIONS: These results support recent findings regarding the effectivity of EGFR inhibitors in hindering the proliferation of human MRT cells and demonstrate that activation of EGFR signaling in Rhabdoid tumors is SMARCB1 dependent.


Asunto(s)
Neoplasias Encefálicas/genética , Proteínas Cromosómicas no Histona/biosíntesis , Receptores ErbB/genética , Neoplasias Renales/genética , Fosfoproteínas/biosíntesis , Tumor Rabdoide/genética , Animales , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Ensamble y Desensamble de Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Marcaje Isotópico , Neoplasias Renales/patología , Ratones , Fosfoproteínas/genética , Proteómica , Tumor Rabdoide/patología , Proteína SMARCB1 , Transducción de Señal
7.
Mol Cell Endocrinol ; 408: 62-72, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25724481

RESUMEN

High output of steroid hormone synthesis in steroidogenic cells of the adrenal cortex and the gonads requires the expression of the steroidogenic acute regulatory protein (StAR) that facilitates cholesterol mobilization to the mitochondrial inner membrane where the CYP11A1/P450scc enzyme complex converts the sterol to the first steroid. Earlier studies have shown that StAR is active while pausing on the cytosolic face of the outer mitochondrial membrane while subsequent import of the protein into the matrix terminates the cholesterol mobilization activity. Consequently, during repeated activity cycles, high level of post-active StAR accumulates in the mitochondrial matrix. To prevent functional damage due to such protein overload effect, StAR is degraded by a sequence of three to four ATP-dependent proteases of the mitochondria protein quality control system, including LON and the m-AAA membranous proteases AFG3L2 and SPG7/paraplegin. Furthermore, StAR expression in both peri-ovulatory ovarian cells, or under ectopic expression in cell line models, results in up to 3-fold enrichment of the mitochondrial proteases and their transcripts. We named this novel form of mitochondrial stress as StAR overload response (SOR). To better understand the SOR mechanism at the transcriptional level we analyzed first the unexplored properties of the proximal promoter of the LON gene. Our findings suggest that the human nuclear respiratory factor 2 (NRF-2), also known as GA binding protein (GABP), is responsible for 88% of the proximal promoter activity, including the observed increase of transcription in the presence of StAR. Further studies are expected to reveal if common transcriptional determinants coordinate the SOR induced transcription of all the genes encoding the SOR proteases.


Asunto(s)
Factor de Transcripción de la Proteína de Unión a GA/metabolismo , Mitocondrias/metabolismo , Fosfoproteínas/metabolismo , Proteasa La/genética , Estrés Fisiológico/genética , Activación Transcripcional/genética , Animales , Secuencia de Bases , Humanos , Datos de Secuencia Molecular
8.
Stem Cell Rev Rep ; 8(4): 1076-87, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22661117

RESUMEN

Parthenotes have been proposed as a source of embryonic stem cells but they lack the centriole which is inherited through the sperm in all mammalian species, except for rodents. We investigated the centrosome of parthenotes and parthenogenetic embryonic stem cells using parthenogenetic and biparental pig pre-implantation embryos, human and pig parthenogenetic and biparental embryonic stem cells, sheep fibroblasts derived from post implantation parthenogenetic and biparental embryos developed in vivo. We also determined the level of aneuploidy in parthenogenetic cells. Oocytes of all species were activated using ionomycin and 6-dimethylaminopurine (6-DMAP). Over 60% of parthenogenetic blastomeres were affected by an excessive number of centrioles. Centrosome amplification, was observed by microscopical and ultrastructural analysis also in parthenogenetic cell lines of all three species. Over expression of PLK2 and down regulation of CCNF, respectively involved in the stimulation and inhibition of centrosome duplication, were present in all species. We also detected down regulation of spindle assembly checkpoint components such as BUB1, CENPE and MAD2. Centrosome amplification was accompanied by multipolar mitotic spindles and all cell lines were affected by a high rate of aneuploidy. These observations indicate a link between centrosome amplification and the high incidence of aneuploidy and suggest that parthenogenetic stem cells may be a useful model to investigate how aneuploidy can be compatible with cell proliferation and differentiation.


Asunto(s)
Aneuploidia , Blastómeros/metabolismo , Centrosoma/metabolismo , Inestabilidad Cromosómica , Partenogénesis , Huso Acromático/metabolismo , Animales , Blastómeros/patología , Ionóforos de Calcio/efectos adversos , Ionóforos de Calcio/farmacología , Proteínas de Unión al Calcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Centrosoma/patología , Proteínas Cromosómicas no Histona/metabolismo , Humanos , Ionomicina/efectos adversos , Ionomicina/farmacología , Proteínas Mad2 , Oocitos/metabolismo , Oocitos/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Represoras/metabolismo , Ovinos , Huso Acromático/patología , Porcinos
9.
PLoS One ; 6(2): e17262, 2011 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-21364955

RESUMEN

MacroH2A1 is a histone H2A variant which contains a large non-histone C-terminal region of largely unknown function. Within this region is a macro domain which can bind ADP-ribose and related molecules. Most studies of macroH2A1 focus on the involvement of this variant in transcriptional repression. Studies in mouse embryos and in embryonic stem cells suggested that during early development macroH2A can be found at the centrosome. Centrosomal localization of macroH2A was later reported in somatic cells. Here we provide data showing that macroH2A1 does not localize to the centrosome and that the centrosomal signal observed with antibodies directed against the macroH2A1 non-histone region may be the result of antibody cross-reactivity.


Asunto(s)
Centrosoma/metabolismo , Histonas/genética , Histonas/metabolismo , Animales , Células Cultivadas , Cromatina/metabolismo , Técnicas de Silenciamiento del Gen , Variación Genética/fisiología , Proteínas Fluorescentes Verdes/metabolismo , Histonas/antagonistas & inhibidores , Humanos , Ratones , Proteínas Mutantes/metabolismo , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología , Proteínas Recombinantes de Fusión/metabolismo , Distribución Tisular , Transfección
10.
Nucleic Acids Res ; 39(4): 1326-35, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21030442

RESUMEN

Promoter hypermethylation and heterochromatinization is a frequent event leading to gene inactivation and tumorigenesis. At the molecular level, inactivation of tumor suppressor genes in cancer has many similarities to the inactive X chromosome in female cells and is defined and maintained by DNA methylation and characteristic histone modifications. In addition, the inactive-X is marked by the histone macroH2A, a variant of H2A with a large non-histone region of unknown function. Studying tumor suppressor genes (TSGs) silenced in cancer cell lines, we find that when active, these promoters are associated with H2A.Z but become enriched for macroH2A1 once silenced. Knockdown of macroH2A1 was not sufficient for reactivation of silenced genes. However, when combined with DNA demethylation, macroH2A1 deficiency significantly enhanced reactivation of the tumor suppressor genes p16, MLH1 and Timp3 and inhibited cell proliferation. Our findings link macroH2A1 to heterochromatin of epigenetically silenced cancer genes and indicate synergism between macroH2A1 and DNA methylation in maintenance of the silenced state.


Asunto(s)
Metilación de ADN , Silenciador del Gen , Genes p16 , Histonas/metabolismo , Alelos , Línea Celular , Línea Celular Tumoral , Neoplasias del Colon/genética , Técnicas de Silenciamiento del Gen , Genes Supresores de Tumor , Histonas/genética , Humanos , Regiones Promotoras Genéticas
11.
Stem Cells ; 28(8): 1349-54, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20572015

RESUMEN

Direct reprogramming procedures reset the epigenetic memory of cells and convert differentiated somatic cells into pluripotent stem cells. In addition to epigenetic memory of cell identity, which is established during development, somatic cells can accumulate abnormal epigenetic changes that can contribute to pathological conditions. Aberrant promoter hypermethylation and epigenetic silencing of tumor suppressor genes (TSGs) are now recognized as an important mechanism in tumor initiation and progression. Here, we have studied the fate of the silenced TSGs p16(CDKN2A) during direct reprogramming. We find that following reprogramming, p16 expression is restored and is stably maintained even when cells are induced to differentiate. Large-scale methylation profiling of donor cells identified aberrant methylation at hundreds of additional sites. Methylation at many, but not all these sites was reversed following reprogramming. Our results suggest that reprogramming approaches may be applied to repair the epigenetic lesions associated with cancer.


Asunto(s)
Reprogramación Celular/fisiología , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Epigénesis Genética/genética , Células Cultivadas , Reprogramación Celular/genética , Metilación de ADN/genética , Metilación de ADN/fisiología , Silenciador del Gen/fisiología , Humanos
12.
Genetics ; 175(4): 1549-60, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17449867

RESUMEN

Epe1 is a JmjC domain protein that antagonizes heterochromatization in Schizosaccharomyces pombe. Related JmjC domain proteins catalyze a histone demethylation reaction that depends on Fe(II) and alpha-ketoglutarate. However, no detectable demethylase activity is associated with Epe1, and its JmjC domain lacks conservation of Fe(II)-binding residues. We report that Swi6 recruits Epe1 to heterochromatin and that overexpression of epe1+, like mutations in silencing genes or overexpression of swi6+, upregulates expression of certain genes. A significant overlap was observed between the lists of genes that are upregulated by overexpression of epe1+ and those that are upregulated by mutations in histone deacetylase genes. However, most of the common genes are not regulated by Clr4 histone methyltransferase. This suggests that Epe1 interacts with the heterochromatin assembly pathway at the stage of histone deacetylation. Mutational inactivation of Epe1 downregulates approximately 12% of S. pombe genes, and the list of these genes overlaps significantly with the lists of genes that are upregulated by mutations in silencing genes and genes that are hyperacetylated at their promoter regions in clr6-1 mutants. We propose that an interplay between the repressive HDACs activity and Epe1 helps to regulate gene expression in S. pombe.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Ensamble y Desensamble de Cromatina/fisiología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Regulación Fúngica de la Expresión Génica , Silenciador del Gen , Genes Fúngicos , Heterocromatina/genética , Heterocromatina/metabolismo , Histona Desacetilasas/metabolismo , Histonas/química , Histonas/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Metilación , Microscopía Fluorescente , Mutación , Regiones Promotoras Genéticas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
13.
Mol Cell Biol ; 23(12): 4356-70, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12773576

RESUMEN

The heterochromatin domain at the mat locus of Schizosaccharomyces pombe is bounded by the IR-L and IR-R barriers. A genetic screen for mutations that promote silencing beyond IR-L revealed a novel gene named epe1, encoding a conserved nuclear protein with a jmjC domain. Disruption of epe1 promotes continuous spreading of heterochromatin-associated histone modifications and Swi6 binding to chromatin across heterochromatic barriers. It also enhances position effect variegation at heterochromatic domains, suppresses mutations in silencing genes, and stabilizes the repressed epigenetic state at the mat locus. However, it does not enhance silencing establishment. Our analysis suggests that the jmjC domain is essential for Epe1 activity and that Epe1 counteracts transcriptional silencing by negatively affecting heterochromatin stability. Consistent with this proposition, the meiotic stability of established heterochromatin beyond IR-L is diminished by Epe1 activity, and overexpression of Epe1 disrupts heterochromatin through acetylation of H3-K9 and H3-K14 and methylation of H3-K4. Furthermore, overexpression of Epe1 elevates the rate of chromosome loss. We propose that Epe1 helps control chromatin organization by down-regulating the stability of epigenetic marks that govern heterochromatization.


Asunto(s)
Heterocromatina/química , Proteínas Nucleares/fisiología , Proteínas de Schizosaccharomyces pombe/fisiología , Secuencia de Aminoácidos , Núcleo Celular/metabolismo , Cromatina/metabolismo , Codón sin Sentido , Silenciador del Gen , Genotipo , Proteínas Fluorescentes Verdes , Heterocromatina/metabolismo , Histonas/metabolismo , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente , Modelos Genéticos , Datos de Secuencia Molecular , Mutación , Proteínas Nucleares/química , Fenotipo , Plásmidos/metabolismo , Pruebas de Precipitina , Unión Proteica , Estructura Terciaria de Proteína , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe/química , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...