Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Res Commun ; 3(4): 640-658, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37082579

RESUMEN

Specific targets for cancer treatment are highly desirable, but still remain to be discovered. While previous reports suggested that CAPRIN-1 localizes in the cytoplasm, here we now show that part of this molecule is strongly expressed on the cell membrane surface in most solid cancers, but not normal tissues. Notably, the membrane expression of CAPRIN-1 extended to the subset of highly tumorigenic cancer stem cells and epithelial-mesenchymal transition (EMT)-induced metastatic cancer cells. In addition, we revealed that cancer cells with particularly high CAPRIN-1 surface expression exhibited enhanced tumorigenicity. We generated a therapeutic humanized anti-CAPRIN-1 antibody (TRK-950), which strongly and specifically binds to various cancer cells and shows antitumor effects via engagement of immune cells. TRK-950 was further developed as a new cancer drug and a series of preclinical studies demonstrates its therapeutic potency in tumor-bearing mouse models and safety in a relevant cynomolgus monkey model. Together, our data demonstrate that CAPRIN-1 is a novel and universal target for cancer therapies. A phase I clinical study of TRK-950 has been completed (NCT02990481) and a phase Ib study (combination with approved drugs) is currently underway (NCT03872947) in the United States and France. In parallel, a phase I study in Japan is in progress as well (NCT05423262). Significance: Antibody-based cancer therapies have been demonstrated to be effective, but are only approved for a limited number of targets, because the majority of these markers is shared with healthy tissue, which may result in adverse effects. Here, we have successfully identified CAPRIN-1 as a novel truly cancer-specific target, universally expressed on membranes of various cancer cells including cancer stem cells. Clinical studies are underway for the anti-CAPRIN-1 therapeutic antibody TRK-950.


Asunto(s)
Antineoplásicos , Neoplasias , Animales , Ratones , Antineoplásicos/farmacología , Proteínas de Ciclo Celular , Macaca fascicularis/metabolismo , Neoplasias/tratamiento farmacológico
2.
AAPS J ; 25(2): 27, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36805860

RESUMEN

Traditional vaccinations need to be injected with needles, and since some people have a strong aversion to needles, a needle-free alternative delivery system is important. In this study, we employed ionic liquids (ILs) for transcutaneous delivery of cancer antigen-derived peptides to obtain anticancer therapeutic effects in a needle-free manner. ILs successfully increased the in vitro skin permeability of a peptide from Wilms tumor 1 (WT1), one of the more promising cancer antigens, plus or minus an adjuvant, resiquimod (R848), a toll-like receptor 7 agonist. In vivo studies demonstrated that concomitant transcutaneous delivery of WT1 peptide and R848 by ILs induced WT1-specific cytotoxic T lymphocyte (CTL) in mice, resulting in tumor growth inhibition in Lewis lung carcinoma-bearing mice. Interestingly, administrating R848 in ILs before WT1 peptides in ILs increased tumor growth inhibition effects compared to co-administration of both. We found that the prior application of R848 increased the infiltration of leukocytes in the skin and that subsequent delivery of WT1 peptides was more likely to induce WT1-specific CTL. Furthermore, sequential immunization with IL-based formulations was applicable to different types of peptides and cancer models without induction of skin irritation. IL-based transcutaneous delivery of cancer antigen-derived peptides and adjuvants, either alone or together, could be a novel approach to needle-free cancer therapeutic vaccines.


Asunto(s)
Vacunas contra el Cáncer , Líquidos Iónicos , Neoplasias , Animales , Ratones , Vacunas de Subunidad , Adyuvantes Inmunológicos , Modelos Animales de Enfermedad
3.
Bioorg Med Chem ; 10(10): 3257-65, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12150871

RESUMEN

A series of 2-hydroxyarylidene-4-cyclopentene-1,3-diones were designed, synthesized, and evaluated with respect to protein tyrosine kinase (PTK) inhibition, mitochondrial toxicity, and antitumor activity. Our results show that the cyclopentenedione-derived TX-1123 is a more potent antitumor tyrphostin and also shows lower mitochondrial toxicity than the malononitrile-derived AG17, a potent antitumor tyrphostin. The O-methylation product of TX-1123 (TX-1925) retained its tyrphostin-like properties, including mitochondrial toxicity and antitumor activities. However, the methylation product of AG17 (TX-1927) retained its tyrphostin-like antitumor activities, but lost its mitochondrial toxicity. Our comprehensive evaluation of these agents with respect to protein tyrosine kinase inhibition, mitochondrial inhibition, antitumor activity, and hepatotoxicity demonstrates that PTK inhibitors TX-1123 and TX-1925 are more promising candidates for antitumor agents than tyrphostin AG17.


Asunto(s)
Antineoplásicos/síntesis química , Mitocondrias/efectos de los fármacos , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Antineoplásicos/farmacología , Antineoplásicos/toxicidad , Compuestos de Bencilideno/síntesis química , Compuestos de Bencilideno/farmacología , Proteínas Quinasas Dependientes de Calcio-Calmodulina/antagonistas & inhibidores , División Celular/efectos de los fármacos , Ciclopentanos/síntesis química , Ciclopentanos/química , Ciclopentanos/farmacología , Quinasa del Factor 2 de Elongación , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/toxicidad , Hepatocitos/efectos de los fármacos , Humanos , Relación Estructura-Actividad , Células Tumorales Cultivadas , Familia-src Quinasas/antagonistas & inhibidores
4.
Artículo en Inglés | MEDLINE | ID: mdl-12062189

RESUMEN

The structure-based elucidation of 2,4,6-tri-substituted phenols for their antioxidative and anti-peroxidative effects has been investigated using TX-1952 (2,6-diprenyl-4-iodophenol), TX-1961, TX-1980, BTBP and BHT. In the inhibition of mitochondrial lipid peroxidation, the inhibitory activity of 2,6-di-tert-butyl-4-bromophenol (BTBP) (IC(50)=0.17 microM) was twice as high as that of 2,6-di-tert-butyl-4-methylphenol (BHT) (IC(50)=0.31 microM). This result shows that the 4-halogen group increases inhibitory activity for mitochondrial lipid peroxidation. Besides, TX-1952 (IC(50)=0.60 microM) was the highest inhibitor among 2,6-diprenyl-4-halophenols, followed by TX-1961 (IC(50)=0.93 microM) and TX-1980 (IC(50)=1.2 microM). In 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging experiments, the activity of TX-1952 (IC(0.200)=53.1 microM) was lower than that of BHT (IC(0.200)=33.7 microM) and BTBP (IC(0.200)=16.0 microM), but TX-1952 and BHT showed the same HOMO energy (-8.991 eV). These results suggest that the two prenyl groups at ortho position hinder the phenolic hydrogen abstraction by DPPH radical. These findings demonstrated that TX-1952 was a novel and potent inhibitor for lipid peroxidation.


Asunto(s)
Yodobencenos/síntesis química , Yodobencenos/farmacología , Peroxidación de Lípido/efectos de los fármacos , Fenoles/síntesis química , Fenoles/farmacología , Animales , Antioxidantes/farmacología , Compuestos de Bifenilo , Relación Dosis-Respuesta a Droga , Depuradores de Radicales Libres/farmacología , Concentración 50 Inhibidora , Yodobencenos/química , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Fenoles/química , Picratos/metabolismo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...