Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Radiology ; 307(3): e221437, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36916896

RESUMEN

Systematic reviews of diagnostic accuracy studies can provide the best available evidence to inform decisions regarding the use of a diagnostic test. In this guide, the authors provide a practical approach for clinicians to appraise diagnostic accuracy systematic reviews and apply their results to patient care. The first step is to identify an appropriate systematic review with a research question matching the clinical scenario. The user should evaluate the rigor of the review methods to evaluate its credibility (Did the review use clearly defined eligibility criteria, a comprehensive search strategy, structured data collection, risk of bias and applicability appraisal, and appropriate meta-analysis methods?). If the review is credible, the next step is to decide whether the diagnostic performance is adequate for clinical use (Do sensitivity and specificity estimates exceed the threshold that makes them useful in clinical practice? Are these estimates sufficiently precise? Is variability in the estimates of diagnostic accuracy across studies explained?). Diagnostic accuracy systematic reviews that are judged to be credible and provide diagnostic accuracy estimates with sufficient certainty and relevance are the most useful to inform patient care. This review discusses comparative, noncomparative, and emerging approaches to systematic reviews of diagnostic accuracy using a clinical scenario and examples based on recent publications.


Asunto(s)
Diagnóstico , Metaanálisis como Asunto , Revisiones Sistemáticas como Asunto , Humanos , Sensibilidad y Especificidad
2.
Alzheimers Dement ; 19(7): 3235-3243, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36934438

RESUMEN

INTRODUCTION: This systematic review evaluates the accuracy of the Montreal Cognitive Assessment (MoCA) for detecting mild cognitive impairment (MCI). METHODS: We searched MEDLINE, PSYCInfo, EMBASE, and Cochrane CENTRAL (1995-2021) for studies comparing the MoCA with validated diagnostic criteria to identify MCI in general practice. Screening, data extraction, and risk of bias assessment were performed independently, in duplicate. Pooled sensitivity and specificity for MoCA cutoffs were estimated using bivariate meta-analysis. RESULTS: Thirteen studies [2158 participants, 948(44%) with MCI] were included; 10 used Petersen criteria as the reference standard. Risk of bias of studies were high or unclear for all domains except reference standard. Sensitivity and specificity were 73.5%(95% confidence interval: 56.7-85.5) and 91.3%(84.6-95.3) at cutoff <23; 79.5%(67.1-88.0) and 83.7%(75.4-89.6) at cutoff <24; and 83.8%(75.6-89.6) and 70.8(62.1-78.3) at cutoff <25. DISCUSSION: MoCA cutoffs <23 to <25 maximized the sum of sensitivity and specificity for detecting MCI. The risk of bias of included studies limits confidence in these findings.


Asunto(s)
Disfunción Cognitiva , Humanos , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/psicología , Pruebas de Estado Mental y Demencia , Sensibilidad y Especificidad , Examen Neurológico , Pruebas Neuropsicológicas
3.
Can Assoc Radiol J ; 74(3): 497-507, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36412994

RESUMEN

BACKGROUND: P-hacking, the tendency to run selective analyses until they become significant, is prevalent in many scientific disciplines. PURPOSE: This study aims to assess if p-hacking exists in imaging research. METHODS: Protocol, data, and code available here https://osf.io/xz9ku/?view_only=a9f7c2d841684cb7a3616f567db273fa. We searched imaging journals Ovid MEDLINE from 1972 to 2021. Text mining using Python script was used to collect metadata: journal, publication year, title, abstract, and P-values from abstracts. One P-value was randomly sampled per abstract. We assessed for evidence of p-hacking using a p-curve, by evaluating for a concentration of P-values just below .05. We conducted a one-tailed binomial test (α = .05 level of significance) to assess whether there were more P-values falling in the upper range (e.g., .045 < P < .05) than in the lower range (e.g., .04 < P < .045). To assess variation in results introduced by our random sampling of a single P-value per abstract, we repeated the random sampling process 1000 times and pooled results across the samples. Analysis was done (divided into 10-year periods) to determine if p-hacking practices evolved over time. RESULTS: Our search of 136 journals identified 967,981 abstracts. Text mining identified 293,687 P-values, and a total of 4105 randomly sampled P-values were included in the p-hacking analysis. The number of journals and abstracts that were included in the analysis as a fraction and percentage of the total number was, respectively, 108/136 (80%) and 4105/967,981 (.4%). P-values did not concentrate just under .05; in fact, there were more P-values falling in the lower range (e.g., .04 < P < .045) than falling just below .05 (e.g., .045 < P < .05), indicating lack of evidence for p-hacking. Time trend analysis did not identify p-hacking in any of the five 10-year periods. CONCLUSION: We did not identify evidence of p-hacking in abstracts published in over 100 imaging journals since 1972. These analyses cannot detect all forms of p-hacking, and other forms of bias may exist in imaging research such as publication bias and selective outcome reporting.


Asunto(s)
Sesgo de Publicación , Estadística como Asunto
4.
Curr Oncol ; 29(11): 8742-8750, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36421341

RESUMEN

Breast tissue density (BTD) is known to increase the risk of breast cancer but is not routinely used in the risk assessment of the population-based High-Risk Ontario Breast Screening Program (HROBSP). This prospective, IRB-approved study assessed the feasibility and impact of incorporating breast tissue density (BTD) into the risk assessment of women referred to HROBSP who were not genetic mutation carriers. All consecutive women aged 40-69 years who met criteria for HROBSP assessment and referred to Genetics from 1 December 2020 to 31 July 2021 had their lifetime risk calculated with and without BTD using Tyrer-Cuzick model version 8 (IBISv8) to gauge overall impact. McNemar's test was performed to compare eligibility with and without density. 140 women were referred, and 1 was excluded (BRCA gene mutation carrier and automatically eligible). Eight of 139 (5.8%) never had a mammogram, while 17/131 (13%) did not have BTD reported on their mammogram and required radiologist review. Of 131 patients, 22 (16.8%) were clinically impacted by incorporation of BTD: 9/131 (6.9%) became eligible for HROBSP, while 13/131 (9.9%) became ineligible (p = 0.394). It was feasible for the Genetics clinic to incorporate BTD for better risk stratification of eligible women. This did not significantly impact the number of eligible women while optimizing the use of high-risk supplemental MRI screening.


Asunto(s)
Neoplasias de la Mama , Detección Precoz del Cáncer , Humanos , Femenino , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/genética , Estudios de Factibilidad , Estudios Prospectivos , Medición de Riesgo
5.
Pediatr Gastroenterol Hepatol Nutr ; 25(5): 353-375, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36148293

RESUMEN

No systematic review to date has examined histopathological parameters in relation to native liver survival in children who undergo the Kasai operation for biliary atresia (BA). A systematic review and meta-analysis is presented, comparing the frequency of native liver survival in peri-operative severe vs. non-severe liver fibrosis cases, in addition to other reported histopathology parameters. Records were sourced from MEDLINE, Embase, and CENTRAL databases. Studies followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines and compared native liver survival frequencies in pediatric patients with evidence of severe vs. non-severe liver fibrosis, bile duct proliferation, cholestasis, lobular inflammation, portal inflammation, and giant cell transformation on peri-operative biopsies. The primary outcome was the frequency of native liver survival. A random effects meta-analysis was used. Twenty-eight observational studies were included, 1,171 pediatric patients with BA of whom 631 survived with their native liver. Lower odds of native liver survival in the severe liver fibrosis vs. non-severe liver fibrosis groups were reported (odds ratio [OR], 0.16; 95% confidence interval [CI], 0.08-0.33; I2 =46%). No difference in the odds of native liver survival in the severe bile duct destruction vs. non-severe bile duct destruction groups were reported (OR, 0.17; 95% CI, 0.00-63.63; I2 =96%). Lower odds of native liver survival were documented in the severe cholestasis vs. non-severe cholestasis (OR, 0.10; 95% CI, 0.01-0.73; I2 =80%) and severe lobular inflammation vs. non-severe lobular inflammation groups (OR, 0.02; 95% CI, 0.00-0.62; I2 =69%). There was no difference in the odds of native liver survival in the severe portal inflammation vs. non-severe portal inflammation groups (OR, 0.03; 95% CI, 0.00-3.22; I2 =86%) or between the severe giant cell transformation vs. non-severe giant cell transformation groups (OR, 0.15; 95% CI, 0.00-175.21; I2 =94%). The meta-analysis loosely suggests that the presence of severe liver fibrosis, cholestasis, and lobular inflammation are associated with lower odds of native liver survival in pediatric patients after Kasai.

6.
Curr Oncol ; 29(8): 5627-5643, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-36005182

RESUMEN

The relationship between Canadian mammography screening practices for women 40−49 and breast cancer (BC) stage at diagnosis in women 40−49 and 50−59 years was assessed using data from the Canadian Cancer Registry, provincial/territorial screening practices, and screening information from the Canadian Community Health Survey. For the 2010 to 2017 period, women aged 40−49 were diagnosed with lesser relative proportions of stage I BC (35.7 vs. 45.3%; p < 0.001), but greater proportions of stage II (42.6 vs. 36.7%, p < 0.001) and III (17.3 vs. 13.1%, p < 0.001) compared to women 50−59. Stage IV was lower among women 40−49 than 50−59 (4.4% vs. 4.8%, p = 0.005). Jurisdictions with organised screening programs for women 40−49 with annual recall (screeners) were compared with those without (comparators). Women aged 40−49 in comparator jurisdictions had higher proportions of stages II (43.7% vs. 40.7%, p < 0.001), III (18.3% vs. 15.6%, p < 0.001) and IV (4.6% vs. 3.9%, p = 0.001) compared to their peers in screener jurisdictions. Based on screening practices for women aged 40−49, women aged 50−59 had higher proportions of stages II (37.2% vs. 36.0%, p = 0.003) and III (13.6% vs. 12.3%, p < 0.001) in the comparator versus screener groups. The results of this study can be used to reassess the optimum lower age for BC screening in Canada.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/prevención & control , Canadá , Detección Precoz del Cáncer , Femenino , Humanos , Mamografía/métodos , Tamizaje Masivo
7.
Cochrane Database Syst Rev ; 5: CD013639, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35575286

RESUMEN

BACKGROUND: Our March 2021 edition of this review showed thoracic imaging computed tomography (CT) to be sensitive and moderately specific in diagnosing COVID-19 pneumonia. This new edition is an update of the review. OBJECTIVES: Our objectives were to evaluate the diagnostic accuracy of thoracic imaging in people with suspected COVID-19; assess the rate of positive imaging in people who had an initial reverse transcriptase polymerase chain reaction (RT-PCR) negative result and a positive RT-PCR result on follow-up; and evaluate the accuracy of thoracic imaging for screening COVID-19 in asymptomatic individuals. The secondary objective was to assess threshold effects of index test positivity on accuracy. SEARCH METHODS: We searched the COVID-19 Living Evidence Database from the University of Bern, the Cochrane COVID-19 Study Register, The Stephen B. Thacker CDC Library, and repositories of COVID-19 publications through to 17 February 2021. We did not apply any language restrictions. SELECTION CRITERIA: We included diagnostic accuracy studies of all designs, except for case-control, that recruited participants of any age group suspected to have COVID-19. Studies had to assess chest CT, chest X-ray, or ultrasound of the lungs for the diagnosis of COVID-19, use a reference standard that included RT-PCR, and report estimates of test accuracy or provide data from which we could compute estimates. We excluded studies that used imaging as part of the reference standard and studies that excluded participants with normal index test results. DATA COLLECTION AND ANALYSIS: The review authors independently and in duplicate screened articles, extracted data and assessed risk of bias and applicability concerns using QUADAS-2. We presented sensitivity and specificity per study on paired forest plots, and summarized pooled estimates in tables. We used a bivariate meta-analysis model where appropriate. MAIN RESULTS: We included 98 studies in this review. Of these, 94 were included for evaluating the diagnostic accuracy of thoracic imaging in the evaluation of people with suspected COVID-19. Eight studies were included for assessing the rate of positive imaging in individuals with initial RT-PCR negative results and positive RT-PCR results on follow-up, and 10 studies were included for evaluating the accuracy of thoracic imaging for imagining asymptomatic individuals. For all 98 included studies, risk of bias was high or unclear in 52 (53%) studies with respect to participant selection, in 64 (65%) studies with respect to reference standard, in 46 (47%) studies with respect to index test, and in 48 (49%) studies with respect to flow and timing. Concerns about the applicability of the evidence to: participants were high or unclear in eight (8%) studies; index test were high or unclear in seven (7%) studies; and reference standard were high or unclear in seven (7%) studies. Imaging in people with suspected COVID-19 We included 94 studies. Eighty-seven studies evaluated one imaging modality, and seven studies evaluated two imaging modalities. All studies used RT-PCR alone or in combination with other criteria (for example, clinical signs and symptoms, positive contacts) as the reference standard for the diagnosis of COVID-19. For chest CT (69 studies, 28285 participants, 14,342 (51%) cases), sensitivities ranged from 45% to 100%, and specificities from 10% to 99%. The pooled sensitivity of chest CT was 86.9% (95% confidence interval (CI) 83.6 to 89.6), and pooled specificity was 78.3% (95% CI 73.7 to 82.3). Definition for index test positivity was a source of heterogeneity for sensitivity, but not specificity. Reference standard was not a source of heterogeneity. For chest X-ray (17 studies, 8529 participants, 5303 (62%) cases), the sensitivity ranged from 44% to 94% and specificity from 24 to 93%. The pooled sensitivity of chest X-ray was 73.1% (95% CI 64. to -80.5), and pooled specificity was 73.3% (95% CI 61.9 to 82.2). Definition for index test positivity was not found to be a source of heterogeneity. Definition for index test positivity and reference standard were not found to be sources of heterogeneity. For ultrasound of the lungs (15 studies, 2410 participants, 1158 (48%) cases), the sensitivity ranged from 73% to 94% and the specificity ranged from 21% to 98%. The pooled sensitivity of ultrasound was 88.9% (95% CI 84.9 to 92.0), and the pooled specificity was 72.2% (95% CI 58.8 to 82.5). Definition for index test positivity and reference standard were not found to be sources of heterogeneity. Indirect comparisons of modalities evaluated across all 94 studies indicated that chest CT and ultrasound gave higher sensitivity estimates than X-ray (P = 0.0003 and P = 0.001, respectively). Chest CT and ultrasound gave similar sensitivities (P=0.42). All modalities had similar specificities (CT versus X-ray P = 0.36; CT versus ultrasound P = 0.32; X-ray versus ultrasound P = 0.89). Imaging in PCR-negative people who subsequently became positive For rate of positive imaging in individuals with initial RT-PCR negative results, we included 8 studies (7 CT, 1 ultrasound) with a total of 198 participants suspected of having COVID-19, all of whom had a final diagnosis of COVID-19. Most studies (7/8) evaluated CT. Of 177 participants with initially negative RT-PCR who had positive RT-PCR results on follow-up testing, 75.8% (95% CI 45.3 to 92.2) had positive CT findings. Imaging in asymptomatic PCR-positive people For imaging asymptomatic individuals, we included 10 studies (7 CT, 1 X-ray, 2 ultrasound) with a total of 3548 asymptomatic participants, of whom 364 (10%) had a final diagnosis of COVID-19. For chest CT (7 studies, 3134 participants, 315 (10%) cases), the pooled sensitivity was 55.7% (95% CI 35.4 to 74.3) and the pooled specificity was 91.1% (95% CI 82.6 to 95.7). AUTHORS' CONCLUSIONS: Chest CT and ultrasound of the lungs are sensitive and moderately specific in diagnosing COVID-19. Chest X-ray is moderately sensitive and moderately specific in diagnosing COVID-19. Thus, chest CT and ultrasound may have more utility for ruling out COVID-19 than for differentiating SARS-CoV-2 infection from other causes of respiratory illness. The uncertainty resulting from high or unclear risk of bias and the heterogeneity of included studies limit our ability to confidently draw conclusions based on our results.


Asunto(s)
COVID-19 , COVID-19/diagnóstico por imagen , Humanos , SARS-CoV-2 , Sensibilidad y Especificidad , Tomografía Computarizada por Rayos X , Ultrasonografía
8.
Radiology ; 304(3): 566-579, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35579526

RESUMEN

Background There is limited consensus regarding the relative diagnostic performance of cardiac MRI and fluorodeoxyglucose (FDG) PET for cardiac sarcoidosis. Purpose To perform a systematic review and meta-analysis to compare the diagnostic accuracy of cardiac MRI and FDG PET for cardiac sarcoidosis. Materials and Methods Medline, Ovid Epub, Cochrane Central Register of Controlled Trials, Embase, Emcare, and Scopus were searched from inception until January 2022. Inclusion criteria included studies that evaluated the diagnostic accuracy of cardiac MRI or FDG PET for cardiac sarcoidosis in adults. Data were independently extracted by two investigators. Summary accuracy metrics were obtained by using bivariate random-effects meta-analysis. Meta-regression was used to assess the effect of different covariates. Risk of bias was assessed using the Quality Assessment Tool for Diagnostic Accuracy Studies-2 tool. The study protocol was registered a priori in the International Prospective Register of Systematic Reviews (Prospero protocol CRD42021214776). Results Thirty-three studies were included (1997 patients, 687 with cardiac sarcoidosis); 17 studies evaluated cardiac MRI (1031 patients) and 26 evaluated FDG PET (1363 patients). Six studies directly compared cardiac MRI and PET in the same patients (303 patients). Cardiac MRI had higher sensitivity than FDG PET (95% vs 84%; P = .002), with no difference in specificity (85% vs 82%; P = .85). In a sensitivity analysis restricted to studies with direct comparison, point estimates were similar to those from the overall analysis: cardiac MRI and FDG PET had sensitivities of 92% and 81% and specificities of 72% and 82%, respectively. Covariate analysis demonstrated that sensitivity for FDG PET was highest with quantitative versus qualitative evaluation (93% vs 76%; P = .01), whereas sensitivity for MRI was highest with inclusion of T2 imaging (99% vs 88%; P = .001). Thirty studies were at risk of bias. Conclusion Cardiac MRI had higher sensitivity than fluorodeoxyglucose PET for diagnosis of cardiac sarcoidosis but similar specificity. Limitations, including risk of bias and few studies with direct comparison, necessitate additional study. © RSNA, 2022 Online supplemental material is available for this article.


Asunto(s)
Miocarditis , Sarcoidosis , Adulto , Fluorodesoxiglucosa F18 , Humanos , Imagen por Resonancia Magnética/métodos , Tomografía de Emisión de Positrones , Radiofármacos , Sarcoidosis/diagnóstico por imagen , Sensibilidad y Especificidad
9.
World J Radiol ; 14(2): 47-49, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35317244

RESUMEN

The ongoing coronavirus disease 2019 (COVID-19) pandemic continues to present diagnostic challenges. The use of thoracic radiography has been studied as a method to improve the diagnostic accuracy of COVID-19. The 'Living' Cochrane Systematic Review on the diagnostic accuracy of imaging tests for COVID-19 is continuously updated as new information becomes available for study. In the most recent version, published in March 2021, a meta-analysis was done to determine the pooled sensitivity and specificity of chest X-ray (CXR) and lung ultrasound (LUS) for the diagnosis of COVID-19. CXR gave a sensitivity of 80.6% (95%CI: 69.1-88.6) and a specificity of 71.5% (95%CI: 59.8-80.8). LUS gave a sensitivity rate of 86.4% (95%CI: 72.7-93.9) and specificity of 54.6% (95%CI: 35.3-72.6). These results differed from the findings reported in the recent article in this journal where they cited the previous versions of the study in which a meta-analysis for CXR and LUS could not be performed. Additionally, the article states that COVID-19 could not be distinguished, using chest computed tomography (CT), from other respiratory diseases. However, the latest review version identifies chest CT as having a specificity of 80.0% (95%CI: 74.9-84.3), which is much higher than the previous version which indicated a specificity of 61.1% (95%CI: 42.3-77.1). Therefore, CXR, chest CT and LUS have the potential to be used in conjunction with other methods in the diagnosis of COVID-19.

10.
J Magn Reson Imaging ; 56(3): 680-690, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35166411

RESUMEN

BACKGROUND: Despite the nearly ubiquitous reported use of peer review among reputable medical journals, there is limited evidence to support the use of peer review to improve the quality of biomedical research and in particular, imaging diagnostic test accuracy (DTA) research. PURPOSE: To evaluate whether peer review of DTA studies published by imaging journals is associated with changes in completeness of reporting, transparency for risk of bias assessment, and spin. STUDY TYPE: Retrospective cross-sectional study. STUDY SAMPLE: Cross-sectional study of articles published in Journal of Magnetic Resonance Imaging (JMRI), Canadian Association of Radiologists Journal (CARJ), and European Radiology (EuRad) before March 31, 2020. ASSESSMENT: Initial submitted and final versions of manuscripts were evaluated for completeness of reporting using the Standards for Reporting Diagnostic Accuracy Studies (STARD) 2015 and STARD for Abstracts guidelines, transparency of reporting for risk of bias assessment based on Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2), and actual and potential spin using modified published criteria. STATISTICAL TESTS: Two-tailed paired t-tests and paired Wilcoxon signed-rank tests were used for comparisons. A P value <0.05 was considered to be statistically significant. RESULTS: We included 84 diagnostic accuracy studies accepted by three journals between 2014 and 2020 (JMRI = 30, CARJ = 23, and EuRad = 31) of the 692 which were screened. Completeness of reporting according to STARD 2015 increased significantly between initial submissions and final accepted versions (average reported items: 16.67 vs. 17.47, change of 0.80 [95% confidence interval 0.25-1.17]). No significant difference was found for the reporting of STARD for Abstracts (5.28 vs. 5.25, change of -0.03 [-0.15 to 0.11], P = 0.74), QUADAS-2 (6.08 vs. 6.11, change of 0.03 [-1.00 to 0.50], P = 0.92), actual "spin" (2.36 vs. 2.40, change of 0.04 [0.00 to 1.00], P = 0.39) or potential "spin" (2.93 vs. 2.81, change of -0.12 [-1.00 to 0.00], P = 0.23) practices. CONCLUSION: Peer review is associated with a marginal improvement in completeness of reporting in published imaging DTA studies, but not with improvement in transparency for risk of bias assessment or reduction in spin. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY STAGE: 1.


Asunto(s)
Pruebas Diagnósticas de Rutina , Revisión por Pares , Canadá , Estudios Transversales , Humanos , Proyectos de Investigación , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA