RESUMEN
In the Andes, pairs of ecologically similar species are often separated by narrow elevational sympatry zones but the mechanisms mediating sympatry are not fully understood. Here, we describe niche partitioning within a sympatry zone in a fragmented Andean landscape between two closely related flush-pursue species: a high-elevation montane forest dweller, (Myioborus melanocephalus), and a mid-elevation montane forest dweller, (M. miniatus). As all flush-pursuers use very similar hunting techniques involving visual displays to flush and pursue insects in air, and benefit from being the "rare predators", ecological sorting between species in sympatry zones should allow their co-existence. We found that both species occupied vegetation resembling their typical allopatric habitats: a mosaic of pastures, clearings, and shrubs with small proportion of high trees for M. melanocephalus, and dense high forests with high proportion of trees, lower irradiance and higher humidity for M. miniatus. M. melanocephalus often foraged in bushes and at lower heights, whereas M. miniatus often foraged in tree crowns. The two species differed relatively little in their foraging technique. These results demonstrate how ecological sorting permits species of divergent elevational distributions and habitats to successfully coexist in sympatric zones where habitat diversity allows both species to find their preferred habitat.
Asunto(s)
Ecosistema , Conducta Alimentaria/fisiología , Passeriformes/fisiología , Simpatría , Animales , Cruzamiento , Análisis Discriminante , Geografía , Modelos Lineales , América del Sur , Especificidad de la EspecieRESUMEN
Geographic variation in the plumage pattern of birds is widespread but poorly understood, and in very few cases has its evolutionary significance been investigated experimentally. Neotropical warblers of the genus Myioborus use their contrasting black-and-white plumage to flush insect prey during animated foraging displays. Although previous experimental work has demonstrated that white plumage patches are critical to flush-pursuit foraging success, the amount of white in the plumage shows considerable interspecific and intraspecific geographic variation. We investigated the evolutionary significance of this geographic variation by experimentally decreasing or increasing the amount of white in the tail of slate-throated redstarts (Myioborus miniatus comptus) from Monteverde, Costa Rica, to mimic the natural extremes of tail pattern variation in this species. In addition to measuring the effects of plumage manipulation on foraging performance, we performed field experiments measuring the escape response of a common insect prey species (an asilid fly) using model redstarts representing four different Myioborus plumage patterns. Our experiments were designed to test four hypotheses that could explain geographic variation in plumage pattern. Compared to controls, experimental birds with reduced-white tails that mimic the plumage pattern of M. miniatus hellmayri of Guatemala showed significant reductions in flush-pursuit foraging performance. In contrast, the addition of white to the tail to mimic the plumage pattern of M. miniatus verticalis of Bolivia had no significant effect on foraging performance of Costa Rican redstarts. In field experiments with asilid flies, model redstarts simulating the plumage of M. miniatus comptus of Costa Rica and M. miniatus verticalis of Bolivia elicited greater responses than did models of other Myioborus taxa with either less or more white in the plumage. The results of our experiments with both birds and insects allow us to reject two hypotheses for geographic variation in plumage pattern: (1) that geographic variation is a nonadaptive result of genetic drift, and (2) that selection for enhanced flush-pursuit foraging performance generally favors increased white in the plumage, but evolutionary trade-offs constrain the evolution of extensive patches of white in some geographic regions. Instead, our results suggest that geographic variation in the plumage pattern of Myioborus redstarts reflects adaptation to regional habitat characteristics that enhances flush-pursuit foraging performance.
Asunto(s)
Plumas/anatomía & histología , Variación Genética , Pájaros Cantores/anatomía & histología , Pájaros Cantores/fisiología , Animales , Ambiente , Conducta Alimentaria , Geografía , América del Norte , Pájaros Cantores/genética , América del Sur , Cola (estructura animal)/anatomía & histología , Clima TropicalRESUMEN
Sensory exploitation occurs when signals trigger behavioral reactions that diminish the receiver's fitness. Research in this area focuses on the match between the signal's form and the receiver's sensitivity, but the effect of habitat on interspecific sensory exploitation is rarely addressed. Myioborus redstarts use conspicuous wing and tail displays of contrasting black-and-white plumage patches to flush dipteran insects, which are then pursued and captured in flight. Previous studies have shown that by increasing the distance at which insects perform an escape response, conspicuous visual displays improve the birds' foraging performance. We tested the hypothesis that selection for a visual signal that maximizes prey escape distance under local habitat conditions can lead to the evolution of geographic variation in plumage pattern among Myioborus redstarts. Using models of foraging birds, we recorded the escape responses of Dipterous insects to a range of plumage patterns and background tones (from light to dark) to determine whether the plumage pattern that maximizes prey flushing is dependent upon that habitat (background) against which birds are viewed by their prey. Our results indicate that the effectiveness of a particular plumage pattern in flushing dipteran prey depends strongly on the background against which that plumage pattern is displayed, and darker habitat (background) conditions generally favor plumages with more extensive patches of white in the tail. However, the addition of white wing patches that imitate the plumage of the painted redstart (Myioborus pictus) generally increases insect escape responses but reduces the effect that tail pattern variation and background tone have on escape behavior. These experiments support the hypothesis that habitat-specific natural selection to enhance sensory exploitation of prey escape responses could produce geographic variation in plumage patterns of flush-pursuers.