Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 1120, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36849793

RESUMEN

In bacteria and archaea, tripartite ATP-independent periplasmic (TRAP) transporters uptake essential nutrients. TRAP transporters receive their substrates via a secreted soluble substrate-binding protein. How a sodium ion-driven secondary active transporter is strictly coupled to a substrate-binding protein is poorly understood. Here we report the cryo-EM structure of the sialic acid TRAP transporter SiaQM from Photobacterium profundum at 2.97 Å resolution. SiaM comprises a "transport" domain and a "scaffold" domain, with the transport domain consisting of helical hairpins as seen in the sodium ion-coupled elevator transporter VcINDY. The SiaQ protein forms intimate contacts with SiaM to extend the size of the scaffold domain, suggesting that TRAP transporters may operate as monomers, rather than the typically observed oligomers for elevator-type transporters. We identify the Na+ and sialic acid binding sites in SiaM and demonstrate a strict dependence on the substrate-binding protein SiaP for uptake. We report the SiaP crystal structure that, together with docking studies, suggest the molecular basis for how sialic acid is delivered to the SiaQM transporter complex. We thus propose a model for substrate transport by TRAP proteins, which we describe herein as an 'elevator-with-an-operator' mechanism.


Asunto(s)
Proteínas de Transporte de Membrana , Ácido N-Acetilneuramínico , Transporte Biológico , Archaea , Adenosina Trifosfato
2.
Structure ; 30(11): 1518-1529.e5, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36108635

RESUMEN

Tribbles proteins (TRIB1-3) are pseudokinases that recruit substrates to the COP1 ubiquitin ligase. TRIB2 was the first Tribbles ortholog to be implicated as a myeloid leukemia oncogene, because it recruits the C/EBPα transcription factor for ubiquitination by COP1. Here we report identification of nanobodies that bind the TRIB2 pseudokinase domain with low nanomolar affinity. A crystal structure of the TRIB2-Nb4.103 complex identified the nanobody to bind the N-terminal lobe of TRIB2, enabling specific recognition of TRIB2 in an activated conformation that is similar to the C/EBPα-bound state of TRIB1. Characterization in solution revealed that Nb4.103 can stabilize a TRIB2 pseudokinase domain dimer in a face-to-face manner. Conversely, a distinct nanobody (Nb4.101) binds through a similar epitope but does not readily promote dimerization. In combination, this study identifies features of TRIB2 that could be exploited for the development of inhibitors and nanobody tools for future investigation of TRIB2 function.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Anticuerpos de Dominio Único , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Anticuerpos de Dominio Único/metabolismo , Ubiquitina/metabolismo , Ubiquitinación
3.
Methods Enzymol ; 667: 37-58, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35525548

RESUMEN

Tribbles proteins are pervasive pseudokinases in cellular signaling. They play a major role in the differentiation of myeloid cells, hepatocytes and adipocytes, and more widely in immune function, metabolism and cancer. Like many other pseudokinases, an inherent lack of catalytic activity has meant that a specialized cadre of techniques has been required to investigate Tribbles function. A prerequisite to most in vitro biochemistry has been robust methods for purifying useful quantities of Tribbles protein, which can sometimes exhibit non-optimal behavior upon recombinant expression. For instance, structural studies of the Tribbles family have largely focused on TRIB1, in part because of more readily available protein. Here we describe methods we have developed to routinely produce milligram quantities of TRIB1, and specific considerations when employing TRIB1 protein for various downstream analyses. Namely, we describe preparation and crystallization of TRIB1 for structural studies, and using fluorescence polarization and isothermal titration calorimetry to analyze interactions with TRIB1. We hope that applying these considerations can facilitate further understanding of TRIB1 function, specifically, and can be selectively applied to improve studies of other Tribbles proteins and pseudokinases more generally.


Asunto(s)
Diferenciación Celular
4.
ACS Infect Dis ; 6(10): 2771-2782, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-32865965

RESUMEN

Staphylococcus aureus is a prevalent bacterial pathogen in both community and hospital settings, and its treatment is made particularly difficult by resilience within biofilms. Within this niche, serine hydrolase enzymes play a key role in generating and maintaining the biofilm matrix. Activity-based profiling has previously identified a family of serine hydrolases, designated fluorophosphonate-binding hydrolases (Fph's), some of which contribute to the virulence of S. aureus in vivo. These 10 Fph proteins have limited annotation and have few, if any, characterized bacterial or mammalian homologues. This suggests unique hydrolase functions even within bacterial species. Here we report structures of one of the most abundant Fph family members, FphF. Our structures capture FphF alone, covalently bound to a substrate analogue and bound to small molecule inhibitors that occupy the hydrophobic substrate-binding pocket. In line with these findings, we show that FphF has promiscuous esterase activity toward hydrophobic lipid substrates. We present docking studies that characterize interactions of inhibitors and substrates within the active site environment, which can be extended to other Fph family members. Comparison of FphF to other esterases and the wider Fph protein family suggest that FphF forms a new esterase subfamily. Our data suggest that other Fph enzymes, including the virulence factor FphB, are likely to have more restricted substrate profiles than FphF. This work demonstrates a clear molecular rationale for the specificity of fluorophosphonate probes that target FphF and provides a structural template for the design of enhanced probes and inhibitors of the Fph family of serine hydrolases.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Animales , Hidrolasas/genética , Hidrolasas/metabolismo , Serina , Staphylococcus aureus/metabolismo , Especificidad por Sustrato
5.
ChemMedChem ; 15(13): 1128-1138, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32400116

RESUMEN

Multivalent structures can provide multiple interactions at a target site and improve binding affinity. The multivalent presentation of the anti-tumour heptapeptide, SNTSESF, was investigated. This peptide's activity has been attributed to blockade of the PD-1 receptor-mediated signalling pathway. Two and four peptide units were conjugated to poly ethoxy ethyl glycinamide (PEE-G) scaffolds to prepare high-purity products. These conjugates and the peptide were examined in a mouse model implanted with GL261 tumours that indicated that presenting more than two copies of peptide SNTSESF on the dendritic scaffold does not increase anti-tumour activity per peptide. The fluorescent labelled peptide and most active multivalent peptide conjugate were therefore screened for their interaction with the human PD-L1 protein in a fluorescence polarisation assay. No indication of a specific SNTSESF peptide/PD-L1 interaction was observed. This finding was further supported by a molecular modelling binding study.


Asunto(s)
Glicina/análogos & derivados , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Glicina/síntesis química , Glicina/química , Glicina/farmacología , Humanos , Ratones , Ratones Endogámicos C57BL , Estructura Molecular , Receptor de Muerte Celular Programada 1/metabolismo , Relación Estructura-Actividad
6.
Sci Signal ; 11(549)2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30254053

RESUMEN

The Tribbles family of pseudokinases recruits substrates to the ubiquitin ligase COP1 to facilitate ubiquitylation. CCAAT/enhancer-binding protein (C/EBP) family transcription factors are crucial Tribbles substrates in adipocyte and myeloid cell development. We found that the TRIB1 pseudokinase was able to recruit various C/EBP family members and that the binding of C/EBPß was attenuated by phosphorylation. To explain the mechanism of C/EBP recruitment, we solved the crystal structure of TRIB1 in complex with C/EBPα, which revealed that TRIB1 underwent a substantial conformational change relative to its substrate-free structure and bound C/EBPα in a pseudosubstrate-like manner. Crystallographic analysis and molecular dynamics and subsequent biochemical assays showed that C/EBP binding triggered allosteric changes that link substrate recruitment to COP1 binding. These findings offer a view of pseudokinase regulation with striking parallels to bona fide kinase regulation-by means of the activation loop and αC helix-and raise the possibility of small molecules targeting either the activation "loop-in" or "loop-out" conformations of Tribbles pseudokinases.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Sitio Alostérico , Cristalografía por Rayos X , Fluorometría , Humanos , Simulación de Dinámica Molecular , Fosforilación , Unión Proteica , Dominios Proteicos , Especificidad por Sustrato , Ubiquitina-Proteína Ligasas/metabolismo
7.
Proc Natl Acad Sci U S A ; 114(11): E2096-E2105, 2017 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-28242696

RESUMEN

Apoptosis signal-regulating kinases (ASK1-3) are apical kinases of the p38 and JNK MAP kinase pathways. They are activated by diverse stress stimuli, including reactive oxygen species, cytokines, and osmotic stress; however, a molecular understanding of how ASK proteins are controlled remains obscure. Here, we report a biochemical analysis of the ASK1 kinase domain in conjunction with its N-terminal thioredoxin-binding domain, along with a central regulatory region that links the two. We show that in solution the central regulatory region mediates a compact arrangement of the kinase and thioredoxin-binding domains and the central regulatory region actively primes MKK6, a key ASK1 substrate, for phosphorylation. The crystal structure of the central regulatory region reveals an unusually compact tetratricopeptide repeat (TPR) region capped by a cryptic pleckstrin homology domain. Biochemical assays show that both a conserved surface on the pleckstrin homology domain and an intact TPR region are required for ASK1 activity. We propose a model in which the central regulatory region promotes ASK1 activity via its pleckstrin homology domain but also facilitates ASK1 autoinhibition by bringing the thioredoxin-binding and kinase domains into close proximity. Such an architecture provides a mechanism for control of ASK-type kinases by diverse activators and inhibitors and demonstrates an unexpected level of autoregulatory scaffolding in mammalian stress-activated MAP kinase signaling.


Asunto(s)
MAP Quinasa Quinasa Quinasa 5/química , MAP Quinasa Quinasa Quinasa 5/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Humanos , MAP Quinasa Quinasa 6/química , MAP Quinasa Quinasa 6/genética , MAP Quinasa Quinasa 6/metabolismo , MAP Quinasa Quinasa Quinasa 5/genética , Modelos Biológicos , Modelos Moleculares , Mutación , Fosforilación , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Transducción de Señal , Relación Estructura-Actividad , Especificidad por Sustrato
8.
Structure ; 23(11): 2111-21, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26455797

RESUMEN

CCAAT-enhancer binding proteins (C/EBPs) are transcription factors that play a central role in the differentiation of myeloid cells and adipocytes. Tribbles pseudokinases govern levels of C/EBPs by recruiting them to the COP1 ubiquitin ligase for ubiquitination. Here, we present the first crystal structure of a Tribbles protein, which reveals a catalytically inactive TRIB1 pseudokinase domain with a unique adaptation in the αC helix. A second crystal structure and biophysical studies of TRIB1 with its C-terminal extension, which includes the COP1-binding motif, show that the C-terminal extension is sequestered at a site formed by the modified TRIB1 αC helix. In addition, we have identified and characterized the TRIB1 substrate-recognition sequence within C/EBPα, which is evolutionarily conserved in C/EBP transcription factors. Binding studies indicate that C/EBPα recruitment is weaker in the presence of the C-terminal COP1-binding motif, but the magnitude of this effect suggests that the two bind distinct rather directly overlapping binding sites.


Asunto(s)
Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Elementos de Facilitación Genéticos , Péptidos y Proteínas de Señalización Intracelular/química , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sitios de Unión , Proteína alfa Potenciadora de Unión a CCAAT/química , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Datos de Secuencia Molecular , Unión Proteica , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA