Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioorg Med Chem ; 109: 117798, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38906068

RESUMEN

N-(Benzothiazole-2-yl)pyrrolamide DNA gyrase inhibitors with benzyl or phenethyl substituents attached to position 3 of the benzothiazole ring or to the carboxamide nitrogen atom were prepared and studied for their inhibition of Escherichia coli DNA gyrase by supercoiling assay. Compared to inhibitors bearing the substituents at position 4 of the benzothiazole ring, the inhibition was attenuated by moving the substituent to position 3 and further to the carboxamide nitrogen atom. A co-crystal structure of (Z)-3-benzyl-2-((4,5-dibromo-1H-pyrrole-2-carbonyl)imino)-2,3-dihydrobenzo[d]-thiazole-6-carboxylic acid (I) in complex with E. coli GyrB24 (ATPase subdomain) was solved, revealing the binding mode of this type of inhibitor to the ATP-binding pocket of the E. coli GyrB subunit. The key binding interactions were identified and their contribution to binding was rationalised by quantum theory of atoms in molecules (QTAIM) analysis. Our study shows that the benzyl or phenethyl substituents bound to the benzothiazole core interact with the lipophilic floor of the active site, which consists mainly of residues Gly101, Gly102, Lys103 and Ser108. Compounds with substituents at position 3 of the benzothiazole core were up to two orders of magnitude more effective than compounds with substituents at the carboxamide nitrogen. In addition, the 6-oxalylamino compounds were more potent inhibitors of E. coli DNA gyrase than the corresponding 6-acetamido analogues.


Asunto(s)
Girasa de ADN , Escherichia coli , Inhibidores de Topoisomerasa II , Inhibidores de Topoisomerasa II/farmacología , Inhibidores de Topoisomerasa II/química , Inhibidores de Topoisomerasa II/síntesis química , Girasa de ADN/metabolismo , Girasa de ADN/química , Sitios de Unión , Escherichia coli/enzimología , Escherichia coli/efectos de los fármacos , Relación Estructura-Actividad , Benzotiazoles/química , Benzotiazoles/farmacología , Benzotiazoles/síntesis química , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/química , Estructura Molecular , Teoría Cuántica , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Modelos Moleculares
2.
Bioorg Med Chem ; 27(18): 3998-4012, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31327675

RESUMEN

Several 3',5'-cyclic nucleotide phosphodiesterases (PDEs) have been validated as good drug targets for a large variety of diseases. Trypanosoma brucei PDEB1 (TbrPDEB1) has been designated as a promising drug target for the treatment of human African trypanosomiasis. Recently, the first class of selective nanomolar TbrPDEB1 inhibitors was obtained by targeting the parasite specific P-pocket. However, these biphenyl-substituted tetrahydrophthalazinone-based inhibitors did not show potent cellular activity against Trypanosoma brucei (T. brucei) parasites, leaving room for further optimization. Herein, we report the discovery of a new class of potent TbrPDEB1 inhibitors that display improved activities against T. brucei parasites. Exploring different linkers between the reported tetrahydrophthalazinone core scaffold and the amide tail group resulted in the discovery of alkynamide phthalazinones as new TbrPDEB1 inhibitors, which exhibit submicromolar activities versus T. brucei parasites and no cytotoxicity to human MRC-5 cells. Elucidation of the crystal structure of alkynamide 8b (NPD-048) bound to the catalytic domain of TbrPDEB1 shows a bidentate interaction with the key-residue Gln874 and good directionality towards the P-pocket. Incubation of trypanosomes with alkynamide 8b results in an increase of intracellular cAMP, validating a PDE-mediated effect in vitro and providing a new interesting compound series for further studies towards selective TbrPDEB1 inhibitors with potent phenotypic activity.


Asunto(s)
Inhibidores de Fosfodiesterasa/uso terapéutico , Trypanosoma brucei brucei/efectos de los fármacos , Humanos , Inhibidores de Fosfodiesterasa/farmacología , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...