Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 947: 174592, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38981549

RESUMEN

This 20-year study (2001-2020) conducted in Jangmok Bay, Korea, assessed the intricate relationships between environmental factors and Noctiluca scintillans blooms. Granger causality tests and PCA analysis were used to assess the impact of sea surface temperature (SST), salinity, dissolved oxygen (DO) concentration, wind patterns, rainfall, and chlorophyll-a (Chl-a) concentration on bloom dynamics. The results revealed significant, albeit delayed, influences of these variables on bloom occurrence, with SST exhibiting a notable 2-month lag and salinity a 1-month lag in their impact. Additionally, the analysis highlighted the significant roles of phosphate, ammonium, and silicate, which influenced N. scintillans blooms with lags of 1 to 3 months. The PCA demonstrates how SST and wind speed during spring and summer, along with wind direction and salinity in winter, significantly impact N. scintillans blooms. We noted not only an increase in large-scale N. scintillans blooms but also a cyclical pattern of occurrence every 3 years. These findings underscore the synergistic effects of environmental factors, highlighting the complex interplay between SST, salinity, DO concentration, and weather conditions to influence bloom patterns. This research enhances our understanding of harmful algal blooms (HABs), emphasizing the importance of a comprehensive approach that considers multiple interconnected environmental variables for predicting and managing N. scintillans blooms.


Asunto(s)
Bahías , Monitoreo del Ambiente , Floraciones de Algas Nocivas , República de Corea , Salinidad , Dinoflagelados/crecimiento & desarrollo , Estaciones del Año , Clorofila A/análisis , Agua de Mar/química , Temperatura , Viento
2.
Ecotoxicol Environ Saf ; 253: 114653, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36812868

RESUMEN

In-water cleaning (IWC) involves the removal of biofilms and foulants from the hull of a ship using brush or water jet. During IWC, several factors associated with the harmful chemical contaminants release to the marine environment, which can create "hotspots" of chemical contamination in coastal areas. To elucidate the potential toxic effects of IWC discharge, we investigated developmental toxicity in embryonic flounder, which are sensitive life stage to chemical exposure. Zinc and copper were the dominant metals, while zinc pyrithione was the most abundant biocide associated with IWC discharge in two remotely operated IWC. Discharge from IWC carried by both remotely operated vehicles (ROVs) produced developmental malformations including pericardial edema, spinal curvature, and tail-fin defects. In an analyses of differential gene expression profiles (fold-change of genes with a cutoff < 0.05) as assessed by high-throughput RNA sequencing, genes associated with muscle development were commonly and significantly changed. The gene ontology (GO) of embryos exposed to IWC discharge from ROV A activities highly enriched muscle and heart development, while cell signaling and transport were evident in embryos exposed to IWC discharge of ROV B. We analyzed the gene network by significant GO terms. In the network, TTN, MYOM1, CASP3, and CDH2 genes appeared to be key regulators of the toxic effects on muscle development. In embryos exposed to ROV B discharge, HSPG2, VEGFA, and TNF genes related to the nervous system pathway were affected. These results shed light on the potential impacts of muscle and nervous system development in non-target coastal organisms exposed to contaminants found in IWC discharge.


Asunto(s)
Procedimientos Quirúrgicos Robotizados , Contaminantes Químicos del Agua , Animales , Agua/química , Peces , Metales/farmacología , Biopelículas , Contaminantes Químicos del Agua/análisis , Embrión no Mamífero
3.
Chem Commun (Camb) ; 58(70): 9834-9837, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-35975752

RESUMEN

The solvation sheath of Li+-glyme was modulated to enhance Li+-TFSI- association by adopting a highly polar solvent, especially water molecules, which affects the solid electrolyte interface (SEI) layer composition. By the Li+-TFSI- association, a TFSI- anion-derived SEI layer is formed on the Li metal anode, resulting in higher Li metal anode efficiency.

4.
Mol Ecol ; 30(1): 207-221, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33113287

RESUMEN

Characterizing ecological relationships between viruses, bacteria and phytoplankton in the ocean is critical to understanding the ecosystem; however, these relationships are infrequently investigated together. To understand the dynamics of microbial communities and environmental factors in harmful algal blooms (HABs), we examined the environmental factors and microbial communities during Akashiwo sanguinea HABs in the Jangmok coastal waters of South Korea by metagenomics. Specific bacterial species showed complex synergistic and antagonistic relationships with the A. sanguinea bloom. The endoparasitic dinoflagellate Amoebophrya sp. 1 controlled the bloom dynamics and correlated with HAB decline. Among nucleocytoplasmic large DNA viruses (NCLDVs), two Pandoraviruses and six Phycodnaviruses were strongly and positively correlated with the HABs. Operational taxonomic units of microbial communities and environmental factors associated with A. sanguinea were visualized by network analysis: A. sanguinea-Amoebophrya sp. 1 (r = .59, time lag: 2 days) and A. sanguinea-Ectocarpus siliculosus virus 1 in Phycodnaviridae (0.50, 4 days) relationships showed close associations. The relationship between A. sanguinea and dissolved inorganic phosphorus relationship also showed a very close correlation (0.74, 0 day). Microbial communities and the environment changed dynamically during the A. sanguinea bloom, and the rapid turnover of microorganisms responded to ecological interactions. A. sanguinea bloom dramatically changes the environments by exuding dissolved carbohydrates via autotrophic processes, followed by changes in microbial communities involving host-specific viruses, bacteria and parasitoids. Thus, the microbial communities in HAB are composed of various organisms that interact in a complex manner.


Asunto(s)
Dinoflagelados , Microbiota , Dinoflagelados/genética , Floraciones de Algas Nocivas , Microbiota/genética , Fitoplancton/genética , República de Corea
5.
iScience ; 23(2): 100844, 2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32006759

RESUMEN

Coupling thin Li metal anodes with high-capacity/high-voltage cathodes such as LiNi0.8Co0.1Mn0.1O2 (NCM811) is a promising way to increase lithium battery energy density. Yet, the realization of high-performance full cells remains a formidable challenge. Here, we demonstrate a new class of highly coordinated, nonflammable carbonate electrolytes based on lithium bis(fluorosulfonyl)imide (LiFSI) in propylene carbonate/fluoroethylene carbonate mixtures. Utilizing an optimal salt concentration (4 M LiFSI) of the electrolyte results in a unique coordination structure of Li+-FSI--solvent cluster, which is critical for enabling the formation of stable interfaces on both the thin Li metal anode and high-voltage NCM811 cathode. Under highly demanding cell configuration and operating conditions (Li metal anode = 35 µm, areal capacity/charge voltage of NCM811 cathode = 4.8 mAh cm-2/4.6 V, and anode excess capacity [relative to the cathode] = 0.83), the Li metal-based full cell provides exceptional electrochemical performance (energy densities = 679 Wh kgcell-1/1,024 Wh Lcell-1) coupled with nonflammability.

6.
Adv Mater ; 32(7): e1905573, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31930614

RESUMEN

The practical implementation of the lithium metal anode is hindered by obstacles such as Li dendrite growth, large volume changes, and poor lifespan. Here, copper nitride nanowires (Cu3 N NWs) printed Li by a facile and low-cost roll-press method is reported, to operate in carbonate electrolytes for high-voltage cathode materials. Through one-step roll pressing, Cu3 N NWs can be conformally printed onto the Li metal surface, and form a Li3 N@Cu NWs layer on the Li metal. The Li3 N@Cu NWs layer can assist homogeneous Li-ion flux with the 3D channel structure, as well as the high Li-ion conductivity of the Li3 N. With those beneficial effects, the Li3 N@Cu NWs layer can guide Li to deposit into a dense and planar structure without Li-dendrite growth. Li metal with Li3 N@Cu NWs protection layer exhibits outstanding cycling performances even at a high current density of 5.0 mA cm-2 with low overpotentials in Li symmetric cells. Furthermore, the stable cyclability and improved rate capability can be realized in a full cell using LiCoO2 over 300 cycles. When decoupling the irreversible reactions of the cathode using Li4 Ti5 O12 , stable cycling performance over 1000 cycles can be achieved at a practical current density of ≈2 mA cm-2 .

7.
ACS Appl Mater Interfaces ; 11(1): 517-524, 2019 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-30525367

RESUMEN

Most electrolytes for rechargeable Mg batteries require time-consuming conditioning or precycling process to achieve a fully reversible Mg deposition/dissolution, which hinders the normal operation of Mg batteries. This study details a simple and effective method for eliminating this conditioning behavior using heptamethyldisilazane (HpMS) as an electrolyte additive. It was found that the HpMS additive greatly increases the current density and Coulombic efficiency of Mg deposition/dissolution from the initial cycles in various sulfone and glyme solutions containing MgCl2 or Mg(TFSI)2. The beneficial effect of HpMS was ascribed to its ability to scavenge trace water in the electrolytes and remove Mg(OH)2 and Mg(TFSI)2-decomposition products from the Mg surface. Considering its applicability for a wide range of Mg electrolytes, the use of HpMS is expected to accelerate the development of practical Mg batteries.

8.
ACS Nano ; 12(5): 4419-4430, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29714999

RESUMEN

Lithium-oxygen (Li-O2) batteries are desirable for electric vehicles because of their high energy density. Li dendrite growth and severe electrolyte decomposition on Li metal are, however, challenging issues for the practical application of these batteries. In this connection, an electrochemically active two-dimensional phosphorene-derived lithium phosphide is introduced as a Li metal protective layer, where the nanosized protective layer on Li metal suppresses electrolyte decomposition and Li dendrite growth. This suppression is attributed to thermodynamic properties of the electrochemically active lithium phosphide protective layer. The electrolyte decomposition is suppressed on the protective layer because the redox potential of lithium phosphide layer is higher than that of electrolyte decomposition. Li plating is thermodynamically unfavorable on lithium phosphide layers, which hinders Li dendrite growth during cycling. As a result, the nanosized lithium phosphide protective layer improves the cycle performance of Li symmetric cells and Li-O2 batteries with various electrolytes including lithium bis(trifluoromethanesulfonyl)imide in N,N-dimethylacetamide. A variety of ex situ analyses and theoretical calculations support these behaviors of the phosphorene-derived lithium phosphide protective layer.

9.
Mar Pollut Bull ; 106(1-2): 139-48, 2016 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-27001714

RESUMEN

Bacterioplankton communities in a semi-closed bay (Jangmok Bay, South Korea) were analysed using a 16S rDNA multiplex 454 pyrosequencing approach. Diversity and operational taxonomic units of bacterioplankton communities in the Jangmok Bay are highest in cold water seasons and lowest in warm water ones. During cold seasons, α-proteobacteria respond rapidly to pulses of the concentration of inorganic nutrients, while γ-proteobacteria during warm water seasons are the most active type of bacterioplankton resent in the prevailing conditions, which include high dissolved organic carbon, chemical oxygen demand and primary production. Cyanobacteria, a minor group constituting 4.58% of the total bacterioplankton, are more abundant at low temperature. Flavobacteria are more abundant in nutrient-rich conditions and the abundance of this group also demonstrated a delayed decline following summer phytoplankton blooms. The pronounced seasonal oscillations in phosphorus concentration and temperature exert strong selection pressure on bacterioplankton communities.


Asunto(s)
Bacterias/clasificación , Monitoreo del Ambiente , Variación Genética , Fitoplancton/clasificación , Bacterias/genética , Bahías , Cianobacterias , Gammaproteobacteria , Nitrógeno/análisis , Fósforo/análisis , Fitoplancton/genética , República de Corea , Estaciones del Año , Temperatura
10.
Environ Sci Technol ; 44(21): 8140-3, 2010 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-20883015

RESUMEN

Oceanic dimethylsulfide (DMS) released to the atmosphere affects the Earth's radiation budget through the production and growth of cloud condensation nuclei over the oceans. However, it is not yet known whether this negative climate feedback mechanism will intensify or weaken in oceans characterized by high CO(2) levels and warm temperatures. To investigate the effects of two emerging environmental threats (ocean acidification and warming) on marine DMS production, we performed a perturbation experiment in a coastal environment. Two sets of CO(2) and temperature conditions (a pCO(2) of ∼900 ppmv at ambient temperature conditions, and a pCO(2) of ∼900 ppmv at a temperature ∼3 °C warmer than ambient) significantly stimulated the grazing rate and the growth rate of heterotrophic dinoflagellates (ubiquitous marine microzooplankton). The increased grazing rate resulted in considerable DMS production. Our results indicate that increased grazing-induced DMS production may occur in high CO(2) oceans in the future.


Asunto(s)
Contaminantes Atmosféricos/metabolismo , Dióxido de Carbono/metabolismo , Agua de Mar/química , Sulfuros/metabolismo , Contaminantes Atmosféricos/análisis , Dióxido de Carbono/análisis , Diatomeas/crecimiento & desarrollo , Diatomeas/metabolismo , Dinoflagelados/crecimiento & desarrollo , Dinoflagelados/metabolismo , Efecto Invernadero , Concentración de Iones de Hidrógeno , Océanos y Mares , Sulfuros/análisis
11.
J Contam Hydrol ; 69(1-2): 139-56, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14972441

RESUMEN

A streamline-based history matching technique is employed to perform fast and efficient permeability identification and to integrate tracer data into an inverse model. To incorporate tracer data into the inverse model, a given tracer breakthrough curve is interpreted as cumulative breakthrough along independent streamlines. Permeabilities are modified along each streamline to match the tracer breakthrough curve. In this way, there is no explicit computation of sensitivity coefficients, nor any matrix inversion. However, this approach is incomplete by itself. Since the modifications occur along the streamlines, the identified permeability distribution is often incompatible with the actual permeability distribution. Thus, streamlines should be positioned correctly before the streamline-based method is applied. To accomplish this, geostatistical methods such as kriging and sequential Gaussian simulation (SGS) are implemented to provide an appropriate disposition of streamlines at the beginning of the inverse process. Then, permeabilities are iteratively calibrated in a conventional grid system to satisfy pressure and permeability observation data, and simultaneously modified along streamlines to match tracer data. The two independent optimization processes assist mutually and lead to stable convergence to a minimum. By applying the proposed inverse system to synthetic reference fields, it is observed that identified fields satisfactorily reproduce the permeability distribution of the reference fields. In addition, the pressure distributions of the identified and the reference fields are fairly alike, and the identified tracer breakthrough curves are well fitted to those of the reference fields. With regard to spatial patterns of transport behaviors, the streamlines of the identified fields show similar trajectories to those of the reference fields, and the time of flight distributions of the inversed fields are also analogous to those of the reference fields. The proposed inverse system is capable of estimating the future performance of a two-dimensional aquifer from a constrained number of permeability and pressure observation data accompanied by tracer data.


Asunto(s)
Modelos Teóricos , Contaminantes del Agua/análisis , Abastecimiento de Agua , Calibración , Permeabilidad , Suelo
12.
Langmuir ; 20(10): 3821-3, 2004 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-15969362

RESUMEN

We report on a novel covalent coupling method using electrochemical activation of hydroquinone monoester self-assembled monolayers. The reaction generates benzoquinone as a good leaving group, followed by nucleophilic acyl substitution with a primary amine to form an amide in high yield. The method allows the site-selective and the reaction-controlled positioning of biotin on the individually addressable microelectrode array and, subsequently, density-differentiated patterning of streptavidin on the biotin surfaces. Because the electrochemical coupling method provides a very rapid, mild, and quantitatively controllable reaction pathway for covalent bond formation on organic surfaces, it will be used as a versatile molecular anchoring tool in fields such as molecular electronics and biochip technology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...