Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 132024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38869055

RESUMEN

The generation of distinct cell fates during development depends on asymmetric cell division of progenitor cells. In the central and peripheral nervous system of Drosophila, progenitor cells respectively called neuroblasts or sensory organ precursors use PAR polarity during mitosis to control cell fate determination in their daughter cells. How polarity and the cell cycle are coupled, and how the cell cycle machinery regulates PAR protein function and cell fate determination is poorly understood. Here, we generate an analog sensitive allele of CDK1 and reveal that its partial inhibition weakens but does not abolish apical polarity in embryonic and larval neuroblasts and leads to defects in polarisation of fate determinants. We describe a novel in vivo phosphorylation of Bazooka, the Drosophila homolog of PAR-3, on Serine180, a consensus CDK phosphorylation site. In some tissular contexts, phosphorylation of Serine180 occurs in asymmetrically dividing cells but not in their symmetrically dividing neighbours. In neuroblasts, Serine180 phosphomutants disrupt the timing of basal polarisation. Serine180 phosphomutants also affect the specification and binary cell fate determination of sensory organ precursors as well as Baz localisation during their asymmetric cell divisions. Finally, we show that CDK1 phosphorylates Serine-S180 and an equivalent Serine on human PAR-3 in vitro.


Asunto(s)
Proteína Quinasa CDC2 , Polaridad Celular , Proteínas de Drosophila , Animales , Fosforilación , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteína Quinasa CDC2/metabolismo , Proteína Quinasa CDC2/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Órganos de los Sentidos/metabolismo , Órganos de los Sentidos/embriología , Péptidos y Proteínas de Señalización Intracelular
3.
EMBO Rep ; 24(4): e55607, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36852890

RESUMEN

A functional centrosome is vital for the development and physiology of animals. Among numerous regulatory mechanisms of the centrosome, ubiquitin-mediated proteolysis is known to be critical for the precise regulation of centriole duplication. However, its significance beyond centrosome copy number control remains unclear. Using an in vitro screen for centrosomal substrates of the APC/C ubiquitin ligase in Drosophila, we identify several conserved pericentriolar material (PCM) components, including the inner PCM protein Spd2. We show that Spd2 levels are controlled by the interphase-specific form of APC/C, APC/CFzr , in cultured cells and developing brains. Increased Spd2 levels compromise neural stem cell-specific asymmetric PCM recruitment and microtubule nucleation at interphase centrosomes, resulting in partial randomisation of the division axis and segregation patterns of the daughter centrosome in the following mitosis. We further provide evidence that APC/CFzr -dependent Spd2 degradation restricts the amount and mobility of Spd2 at the daughter centrosome, thereby facilitating the accumulation of Polo-dependent Spd2 phosphorylation for PCM recruitment. Our study underpins the critical role of cell cycle-dependent proteolytic regulation of the PCM in stem cells.


Asunto(s)
Drosophila , Células-Madre Neurales , Animales , Centriolos/metabolismo , Centrosoma/metabolismo , Drosophila/fisiología , Mitosis , Ubiquitinas/metabolismo
4.
Curr Biol ; 32(20): 4411-4427.e8, 2022 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-36113470

RESUMEN

Apical-basal polarity is an essential epithelial trait controlled by the evolutionarily conserved PAR-aPKC polarity network. Dysregulation of polarity proteins disrupts tissue organization during development and in disease, but the underlying mechanisms are unclear due to the broad implications of polarity loss. Here, we uncover how Drosophila aPKC maintains epithelial architecture by directly observing tissue disorganization after fast optogenetic inactivation in living adult flies and ovaries cultured ex vivo. We show that fast aPKC perturbation in the proliferative follicular epithelium produces large epithelial gaps that result from increased apical constriction, rather than loss of apical-basal polarity. Accordingly, we can modulate the incidence of epithelial gaps by increasing and decreasing actomyosin-driven contractility. We traced the origin of these large epithelial gaps to tissue rupture next to dividing cells. Live imaging shows that aPKC perturbation induces apical constriction in non-mitotic cells within minutes, producing pulling forces that ultimately detach dividing and neighboring cells. We further demonstrate that epithelial rupture requires a global increase of apical constriction, as it is prevented by the presence of non-constricting cells. Conversely, a global induction of apical tension through light-induced recruitment of RhoGEF2 to the apical side is sufficient to produce tissue rupture. Hence, our work reveals that the roles of aPKC in polarity and actomyosin regulation are separable and provides the first in vivo evidence that excessive tissue stress can break the epithelial barrier during proliferation.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/metabolismo , Actomiosina/metabolismo , Proteínas de Drosophila/metabolismo , Polaridad Celular/fisiología , Constricción , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Epitelio/metabolismo , Células Epiteliales/metabolismo , Drosophila melanogaster/metabolismo
5.
J Vis Exp ; (166)2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33427234

RESUMEN

Drosophila is an important model system to study a vast range of biological questions. Various organs and tissues from different developmental stages of the fly such as imaginal discs, the larval brain or egg chambers of adult females or the adult intestine can be extracted and kept in culture for imaging with time-lapse microscopy, providing valuable insights into cell and developmental biology. Here, we describe in detail our current protocol for the dissection of Drosophila larval brains, and then present our current approach for immobilizing and orienting larval brains and other tissues on a glass coverslip using Fibrin clots. This immobilization method only requires the addition of Fibrinogen and Thrombin to the culture medium. It is suitable for high-resolution time lapse imaging on inverted microscopes of multiple samples in the same culture dish, minimizes the lateral drifting frequently caused by movements of the microscope stage in multi-point visiting microscopy and allows for the addition and removal of reagents during the course of imaging. We also present custom-made macros that we routinely use to correct for drifting and to extract and process specific quantitative information from time-lapse analysis.


Asunto(s)
Coagulación Sanguínea , Drosophila melanogaster/fisiología , Fibrina/farmacología , Imagenología Tridimensional , Adenosina Trifosfato/análogos & derivados , Animales , Encéfalo/anatomía & histología , Medios de Cultivo , Disección , Femenino , Discos Imaginales , Inmovilización , Larva/citología , Óvulo/efectos de los fármacos , Óvulo/fisiología , Procesamiento de Señales Asistido por Computador
6.
Curr Opin Cell Biol ; 62: 70-77, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31698250

RESUMEN

Asymmetric cell division (ACD) is the fundamental process through which one cell divides into two cells with different fates. In animals, it is crucial for the generation of cell-type diversity and for stem cells, which use ACD both to self-renew and produce one differentiating daughter cell. One of the most prominent model systems of ACD, Drosophila neuroblasts, relies on the PAR complex, a conserved set of proteins governing cell polarity in animals. Here, we focus on recent advances in our understanding of the mechanisms that control the orientation of the neuroblast polarity axis, how the PAR complex is positioned, and how its activity may regulate division orientation and cell fate determinant localization and discuss how important findings about the composition polarity complexes in other models may apply to neuroblasts.


Asunto(s)
División Celular Asimétrica/fisiología , Polaridad Celular/fisiología , Drosophila/metabolismo , Animales
7.
Mol Cancer Res ; 17(9): 1828-1841, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31160382

RESUMEN

Adenomatous Polyposis Coli (APC) is the most frequently mutated gene in colorectal cancer. APC negatively regulates the Wnt signaling pathway by promoting the degradation of ß-catenin, but the extent to which APC exerts Wnt/ß-catenin-independent tumor-suppressive activity is unclear. To identify interaction partners and ß-catenin-independent targets of endogenous, full-length APC, we applied label-free and multiplexed tandem mass tag-based mass spectrometry. Affinity enrichment-mass spectrometry identified more than 150 previously unidentified APC interaction partners. Moreover, our global proteomic analysis revealed that roughly half of the protein expression changes that occur in response to APC loss are independent of ß-catenin. Combining these two analyses, we identified Misshapen-like kinase 1 (MINK1) as a putative substrate of an APC-containing destruction complex. We validated the interaction between endogenous MINK1 and APC and further confirmed the negative, and ß-catenin-independent, regulation of MINK1 by APC. Increased Mink1/Msn levels were also observed in mouse intestinal tissue and Drosophila follicular cells expressing mutant Apc/APC when compared with wild-type tissue/cells. Collectively, our results highlight the extent and importance of Wnt-independent APC functions in epithelial biology and disease. IMPLICATIONS: The tumor-suppressive function of APC, the most frequently mutated gene in colorectal cancer, is mainly attributed to its role in ß-catenin/Wnt signaling. Our study substantially expands the list of APC interaction partners and reveals that approximately half of the changes in the cellular proteome induced by loss of APC function are mediated by ß-catenin-independent mechanisms.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/genética , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Neoplasias/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteómica/métodos , Animales , Animales Modificados Genéticamente , Línea Celular Tumoral , Drosophila , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Células HeLa , Humanos , Ratones , Mapas de Interacción de Proteínas , Espectrometría de Masas en Tándem , Vía de Señalización Wnt , beta Catenina/metabolismo
8.
Development ; 146(2)2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30635282

RESUMEN

Studying the function of proteins using genetics in cycling cells is complicated by the fact that there is often a delay between gene inactivation and the time point of phenotypic analysis. This is particularly true when studying kinases that have pleiotropic functions and multiple substrates. Drosophila neuroblasts (NBs) are rapidly dividing stem cells and an important model system for the study of cell polarity. Mutations in multiple kinases cause NB polarity defects, but their precise functions at particular time points in the cell cycle are unknown. Here, we use chemical genetics and report the generation of an analogue-sensitive allele of Drosophila atypical Protein Kinase C (aPKC). We demonstrate that the resulting mutant aPKC kinase can be specifically inhibited in vitro and in vivo Acute inhibition of aPKC during NB polarity establishment abolishes asymmetric localization of Miranda, whereas its inhibition during NB polarity maintenance does not in the time frame of normal mitosis. However, aPKC helps to sharpen the pattern of Miranda, by keeping it off the apical and lateral cortex after nuclear envelope breakdown.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/enzimología , Drosophila melanogaster/genética , Proteína Quinasa C/genética , Alelos , Animales , División Celular , Polaridad Celular , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Larva/citología , Larva/metabolismo , Mutación con Pérdida de Función/genética , Neuronas/metabolismo , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/metabolismo , Interferencia de ARN
9.
Nat Commun ; 9(1): 3745, 2018 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-30218051

RESUMEN

Controlling the orientation of cell division is important in the context of cell fate choices and tissue morphogenesis. However, the mechanisms providing the required positional information remain incompletely understood. Here we use stem cells of the Drosophila larval brain that stably maintain their axis of polarity and division between cell cycles to identify cues that orient cell division. Using live cell imaging of cultured brains, laser ablation and genetics, we reveal that division axis maintenance relies on their last-born daughter cell. We propose that, in addition to known intrinsic cues, stem cells in the developing fly brain are polarized by an extrinsic signal. We further find that division axis maintenance allows neuroblasts to maximize their contact area with glial cells known to provide protective and proliferative signals to neuroblasts.


Asunto(s)
Encéfalo/crecimiento & desarrollo , División Celular/fisiología , Drosophila/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Animales , Ciclo Celular , Polaridad Celular , Proliferación Celular
10.
J Dev Biol ; 6(2)2018 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-29615558

RESUMEN

Spindly was originally identified as a specific regulator of Dynein activity at the kinetochore. In early prometaphase, Spindly recruits the Dynein/Dynactin complex, promoting the establishment of stable kinetochore-microtubule interactions and progression into anaphase. While details of Spindly function in mitosis have been worked out in cultured human cells and in the C. elegans zygote, the function of Spindly within the context of an organism has not yet been addressed. Here, we present loss- and gain-of-function studies of Spindly using transgenic RNAi in Drosophila. Knock-down of Spindly in the female germ line results in mitotic arrest during embryonic cleavage divisions. We investigated the requirements of Spindly protein domains for its localisation and function, and found that the carboxy-terminal region controls Spindly localisation in a cell-type specific manner. Overexpression of Spindly in the female germ line is embryonic lethal and results in altered egg morphology. To determine whether Spindly plays a role in post-mitotic cells, we altered Spindly protein levels in migrating cells and found that ovarian border cell migration is sensitive to the levels of Spindly protein. Our study uncovers novel functions of Spindly and a differential, functional requirement for its carboxy-terminal region in Drosophila.

11.
Elife ; 72018 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-29364113

RESUMEN

Cell fate assignment in the nervous system of vertebrates and invertebrates often hinges on the unequal distribution of molecules during progenitor cell division. We address asymmetric fate determinant localization in the developing Drosophila nervous system, specifically the control of the polarized distribution of the cell fate adapter protein Miranda. We reveal a step-wise polarization of Miranda in larval neuroblasts and find that Miranda's dynamics and cortical association are differently regulated between interphase and mitosis. In interphase, Miranda binds to the plasma membrane. Then, before nuclear envelope breakdown, Miranda is phosphorylated by aPKC and displaced into the cytoplasm. This clearance is necessary for the subsequent establishment of asymmetric Miranda localization. After nuclear envelope breakdown, actomyosin activity is required to maintain Miranda asymmetry. Therefore, phosphorylation by aPKC and differential binding to the actomyosin network are required at distinct phases of the cell cycle to polarize fate determinant localization in neuroblasts.


Asunto(s)
Actomiosina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/crecimiento & desarrollo , Neuronas/fisiología , Proteína Quinasa C/metabolismo , Procesamiento Proteico-Postraduccional , Células Madre/fisiología , Animales , Larva/crecimiento & desarrollo , Fosforilación , Unión Proteica
12.
Curr Biol ; 27(15): R760-R762, 2017 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-28787607

RESUMEN

It has been a long-standing question as to whether the activation of Notch by its ligands occurs in a specific region of the plasma membrane. A study now shows that this is indeed the case in the Drosophila sensory organ precursor cell lineage.


Asunto(s)
Proteínas de Drosophila , Receptores Notch , Animales , Drosophila/citología , Proteínas de la Membrana , Transducción de Señal
13.
Curr Biol ; 27(14): 2101-2111.e5, 2017 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-28690114

RESUMEN

How cells position their proteins is a key problem in cell biology. Targeting mRNAs to distinct regions of the cytoplasm contributes to protein localization by providing local control over translation. Here, we reveal that an interdependence of a protein and cognate mRNA maintains asymmetric protein distribution in mitotic Drosophila neural stem cells. We tagged endogenous mRNA or protein products of the gene miranda that is required for fate determination with GFP. We find that the mRNA localizes like the protein it encodes in a basal crescent in mitosis. We then used GFP-specific nanobodies fused to localization domains to alter the subcellular distribution of the GFP-tagged mRNA or protein. Altering the localization of the mRNA resulted in mislocalization of the protein and vice versa. Protein localization defects caused by mislocalization of the cognate mRNA were rescued by introducing untagged mRNA coding for mutant non-localizable protein. Therefore, by combining the MS2 system and subcellular nanobody expression, we uncovered that maintenance of Mira asymmetric localization requires interaction with the cognate mRNA.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiología , Células-Madre Neurales/metabolismo , ARN Mensajero/genética , Animales , Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Femenino , Larva/genética , Larva/fisiología , Masculino , Mitosis , ARN Mensajero/metabolismo
14.
Methods Cell Biol ; 129: 301-315, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26175445

RESUMEN

Drosophila larval neuroblasts (NBs) are an excellent model for asymmetric division and cell cycle studies in general. For decades, visualizing relevant structures like centrosomes, chromosomes, or the mitotic spindle relied exclusively on immunofluorescence on fix samples. More recently, improvements on sensitivity and acquisition speed of different confocal systems have made it possible to acquire time-resolved images of combined fluorescent reporters from single larval NBs. Here, we provide protocols to visualize centrosomes and other organelles from both primary cultures of isolated single NBs and ex vivo, whole-mounted larval brains.


Asunto(s)
Centrosoma/ultraestructura , Células-Madre Neurales/ultraestructura , Animales , Células Cultivadas , Centrosoma/fisiología , Drosophila , Larva/citología , Microscopía Fluorescente , Cultivo Primario de Células , Imagen de Lapso de Tiempo
15.
Semin Cell Dev Biol ; 34: 116-23, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24613913

RESUMEN

Establishing and maintaining cell fate in the right place at the right time is a key requirement for normal tissue maintenance. Stem cells are at the core of this process. Understanding how stem cells balance self-renewal and production of differentiating cells is key for understanding the defects that underpin many diseases. Both, external cues from the environment and cell intrinsic mechanisms can control the outcome of stem cell division. The role of the orientation of stem cell division has emerged as an important mechanism for specifying cell fate decisions. Although, the alignment of cell divisions can dependent on spatial cues from the environment, maintaining stemness is not always linked to positioning of stem cells in a particular microenvironment or `niche'. Alternate mechanisms that could contribute to cellular memory include differential segregation of centrosomes in asymmetrically dividing cells.


Asunto(s)
Diferenciación Celular , Células Madre/fisiología , Animales , Centrosoma/fisiología , Segregación Cromosómica , Cilios/fisiología , Humanos , Transducción de Señal , Huso Acromático/fisiología , Nicho de Células Madre/fisiología
16.
Mol Biol Cell ; 23(18): 3591-601, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22855530

RESUMEN

Microtubules (MTs) are essential for cell division, shape, intracellular transport, and polarity. MT stability is regulated by many factors, including MT-associated proteins and proteins controlling the amount of free tubulin heterodimers available for polymerization. Tubulin-binding cofactors are potential key regulators of free tubulin concentration, since they are required for α-ß-tubulin dimerization in vitro. In this paper, we show that mutation of the Drosophila tubulin-binding cofactor B (dTBCB) affects the levels of both α- and ß-tubulins and dramatically destabilizes the MT network in different fly tissues. However, we find that dTBCB is dispensable for the early MT-dependent steps of oogenesis, including cell division, and that dTBCB is not required for mitosis in several tissues. In striking contrast, the absence of dTBCB during later stages of oogenesis causes major defects in cell polarity. We show that dTBCB is required for the polarized localization of the axis-determining mRNAs within the oocyte and for the apico-basal polarity of the surrounding follicle cells. These results establish a developmental function for the dTBCB gene that is essential for viability and MT-dependent cell polarity, but not cell division.


Asunto(s)
Polaridad Celular/fisiología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Animales , Animales Modificados Genéticamente , Ciclo Celular/genética , Ciclo Celular/fisiología , Línea Celular , Polaridad Celular/genética , Proliferación Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Inmunohistoquímica , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Confocal , Proteínas Asociadas a Microtúbulos/genética , Mutación , Oocitos/citología , Oocitos/crecimiento & desarrollo , Oocitos/metabolismo , Oogénesis/genética , Oogénesis/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Transducción de Señal/fisiología , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
17.
Dev Cell ; 21(3): 520-33, 2011 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-21920316

RESUMEN

Drosophila neural stem cells, larval brain neuroblasts (NBs), align their mitotic spindles along the apical/basal axis during asymmetric cell division (ACD) to maintain the balance of self-renewal and differentiation. Here, we identified a protein complex composed of the tumor suppressor anastral spindle 2 (Ana2), a dynein light-chain protein Cut up (Ctp), and Mushroom body defect (Mud), which regulates mitotic spindle orientation. We isolated two ana2 alleles that displayed spindle misorientation and NB overgrowth phenotypes in larval brains. The centriolar protein Ana2 anchors Ctp to centrioles during ACD. The centriolar localization of Ctp is important for spindle orientation. Ana2 and Ctp localize Mud to the centrosomes and cell cortex and facilitate/maintain the association of Mud with Pins at the apical cortex. Our findings reveal that the centrosomal proteins Ana2 and Ctp regulate Mud function to orient the mitotic spindle during NB asymmetric division.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Dineínas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/metabolismo , Huso Acromático/metabolismo , Animales , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , División Celular , Centriolos/metabolismo , Centrosoma/metabolismo , Proteínas de Drosophila/genética , Dineínas/genética , Inhibidores de Disociación de Guanina Nucleótido/metabolismo , Larva/metabolismo , Proteínas del Tejido Nervioso/genética , Unión Proteica/genética
18.
Nat Commun ; 2: 243, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21407209

RESUMEN

During asymmetric mitosis, both in male Drosophila germline stem cells and in mouse embryo neural progenitors, the mother centrosome is retained by the self-renewed cell; hence suggesting that mother centrosome inheritance might contribute to stemness. We test this hypothesis in Drosophila neuroblasts (NBs) tracing photo converted centrioles and a daughter-centriole-specific marker generated by cloning the Drosophila homologue of human Centrobin. Here we show that upon asymmetric mitosis, the mother centrosome is inherited by the differentiating daughter cell. Our results demonstrate maturation-dependent centrosome fate in Drosophila NBs and that the stemness properties of these cells are not linked to mother centrosome inheritance.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centriolos/genética , Proteínas de Drosophila/metabolismo , Células-Madre Neurales/citología , Proteínas Recombinantes/metabolismo , Animales , Encéfalo/citología , Encéfalo/metabolismo , Técnicas de Cultivo de Célula , Proteínas de Ciclo Celular/genética , Diferenciación Celular , Centriolos/metabolismo , Centriolos/ultraestructura , Clonación Molecular , Drosophila/citología , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Femenino , Expresión Génica , Humanos , Patrón de Herencia/genética , Larva/citología , Larva/genética , Larva/metabolismo , Masculino , Microscopía Confocal , Mitosis , Células-Madre Neurales/metabolismo , Etiquetas de Fotoafinidad/análisis , Proteínas Recombinantes/genética
19.
J Cell Biol ; 188(5): 693-706, 2010 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-20194641

RESUMEN

The mechanisms that maintain the orientation of cortical polarity and asymmetric division unchanged in consecutive mitoses in Drosophila melanogaster neuroblasts (NBs) are unknown. By studying the effect of transient microtubule depolymerization and centrosome mutant conditions, we have found that such orientation memory requires both the centrosome-organized interphase aster and centrosome-independent functions. We have also found that the span of such memory is limited to the last mitosis. Furthermore, the orientation of the NB axis of polarity can be reset to any angle with respect to the surrounding tissue and is, therefore, cell autonomous.


Asunto(s)
División Celular/fisiología , Drosophila melanogaster/citología , Microtúbulos/metabolismo , Neuronas , Huso Acromático/metabolismo , Animales , Animales Modificados Genéticamente , Polaridad Celular , Células Cultivadas , Centriolos/metabolismo , Centriolos/ultraestructura , Demecolcina/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Larva/citología , Larva/metabolismo , Microtúbulos/ultraestructura , Mutación , Neuronas/citología , Neuronas/fisiología , Huso Acromático/ultraestructura , Moduladores de Tubulina/metabolismo
20.
Development ; 135(23): 3829-38, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18948416

RESUMEN

The attachment of the cytoskeleton to the plasma membrane is crucial in controlling the polarized transport of cell-fate-determining molecules. Attachment involves adaptor molecules, which have the capacity to bind to both the plasma membrane and elements of the cytoskeleton, such as microtubules and actin filaments. Using the Drosophila oocyte as a model system, we show that the type I phosphatidylinositol 4-phosphate 5-kinase (PIP5K), Skittles, is necessary to sustain the organization of microtubules and actin cytoskeleton required for the asymmetric transport of oskar, bicoid and gurken mRNAs and thereby controls the establishment of cell polarity. We show that Skittles function is crucial to synthesize and maintain phosphatidylinositol 4,5 bisphosphate (PIP2) at the plasma membrane in the oocyte. Reduction of Skittles activity impairs activation at the plasma membrane of Moesin, a member of the ERM family known to link the plasma membrane to the actin-based cytoskeleton. Furthermore, we provide evidence that Skittles, by controlling the localization of Bazooka, Par-1 and Lgl, but not Lkb1, to the cell membrane, regulates PAR polarity proteins and the maintenance of specific cortical domains along the anteroposterior axis.


Asunto(s)
Polaridad Celular , Drosophila melanogaster/enzimología , Microtúbulos/metabolismo , Oocitos/citología , Oocitos/enzimología , Fosfatidilinositol 4,5-Difosfato/biosíntesis , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Actinas/metabolismo , Alelos , Animales , Transporte Biológico , Tipificación del Cuerpo , Membrana Celular/enzimología , Núcleo Celular/enzimología , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Microfilamentos/metabolismo , Microtúbulos/enzimología , Mutación/genética , Fosforilación , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Transporte de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...