Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gene Ther ; 29(3-4): 178-192, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34853443

RESUMEN

There are no effective cures for upper motor neuron (UMN) diseases, such as amyotrophic lateral sclerosis (ALS), primary lateral sclerosis, and hereditary spastic paraplegia. Here, we show UMN loss occurs independent of spinal motor neuron degeneration and that UMNs are indeed effective cellular targets for gene therapy, which offers a potential solution especially for UMN disease patients. UCHL1 (ubiquitin C-terminal hydrolase-L1) is a deubiquitinating enzyme crucial for maintaining free ubiquitin levels. Corticospinal motor neurons (CSMN, a.k.a UMNs in mice) show early, selective, and profound degeneration in Uchl1nm3419 (UCHL1-/-) mice, which lack all UCHL1 function. When UCHL1 activity is ablated only from spinal motor neurons, CSMN remained intact. However, restoring UCHL1 specifically in CSMN of UCHL1-/- mice via directed gene delivery was sufficient to improve CSMN integrity to the healthy control levels. In addition, when UCHL1 gene was delivered selectively to CSMN that are diseased due to misfolded SOD1 toxicity and TDP-43 pathology via AAV-mediated retrograde transduction, the disease causing misfolded SOD1 and mutant human TDP-43 were reduced in hSOD1G93A and prpTDP-43A315T models, respectively. Diseased CSMN retained their neuronal integrity and cytoarchitectural stability in two different mouse models that represent two distinct causes of neurodegeneration in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/terapia , Animales , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Terapia Genética , Humanos , Ratones , Ratones Transgénicos , Neuronas Motoras/patología , Superóxido Dismutasa/genética , Superóxido Dismutasa-1/genética , Ubiquitina Tiolesterasa/genética
2.
Front Mol Neurosci ; 13: 73, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32508590

RESUMEN

The brain is complex and heterogeneous. Even though numerous independent studies indicate cortical hyperexcitability as a potential contributor to amyotrophic lateral sclerosis (ALS) pathology, the mechanisms that are responsible for upper motor neuron (UMN) vulnerability remain elusive. To reveal the electrophysiological determinants of corticospinal motor neuron (CSMN, a.k.a UMN in mice) vulnerability, we investigated the motor cortex of hSOD1G93A mice at P30 (postnatal day 30), a presymptomatic time point. Glutamate uncaging by laser scanning photostimulation (LSPS) revealed altered dynamics especially within the inhibitory circuitry and more specifically in L2/3 of the motor cortex, whereas the excitatory microcircuits were unchanged. Observed microcircuitry changes were specific to CSMN in the motor column. Electrophysiological evaluation of the intrinsic properties in response to the microcircuit changes, as well as the exon microarray expression profiles of CSMN isolated from hSOD1G93A and healthy mice at P30, revealed the presence of a very dynamic set of events, ultimately directed to establish, maintain and retain the balance at this early stage. Also, the expression profile of key voltage-gated potassium and sodium channel subunits as well as of the inhibitory GABA receptor subunits and modulatory proteins began to suggest the challenges CSMN face at this early age. Since neurodegeneration is initiated when neurons can no longer maintain balance, the complex cellular events that occur at this critical time point help reveal how CSMN try to cope with the challenges of disease manifestation. This information is critically important for the proper modulation of UMNs and for developing effective treatment strategies.

3.
J Neuroinflammation ; 16(1): 196, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31666087

RESUMEN

BACKGROUND: The involvement of non-neuronal cells and the cells of innate immunity has been attributed to the initiation and progression of ALS. TDP-43 pathology is observed in a broad spectrum of ALS cases and is one of the most commonly shared pathologies. The potential involvement of the neuroimmune axis in the motor cortex of ALS patients with TDP-43 pathology needs to be revealed. This information is vital for building effective treatment strategies. METHODS: We investigated the presence of astrogliosis and microgliosis in the motor cortex of ALS patients with TDP-43 pathology. prpTDP-43A315T-UeGFP mice, corticospinal motor neuron (CSMN) reporter line with TDP-43 pathology, are utilized to reveal the timing and extent of neuroimmune interactions and the involvement of non-neuronal cells to neurodegeneration. Electron microscopy and immunolabeling techniques are used to mark and monitor cells of interest. RESULTS: We detected both activated astrocytes and microglia, especially rod-like microglia, in the motor cortex of patients and TDP-43 mouse model. Besides, CCR2+ TMEM119- infiltrating monocytes were detected as they penetrate the brain parenchyma. Interestingly, Betz cells, which normally do not express MCP1, were marked with high levels of MCP1 expression when diseased. CONCLUSIONS: There is an early contribution of a neuroinflammatory response for upper motor neuron (UMN) degeneration with respect to TDP-43 pathology, and MCP1-CCR2 signaling is important for the recognition of diseased upper motor neurons by infiltrating monocytes. The findings are conserved among species and are observed in both ALS and ALS-FTLD patients.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Proteínas de Unión al ADN/metabolismo , Corteza Motora/metabolismo , Corteza Motora/patología , Receptores CCR2/metabolismo , Adulto , Anciano , Animales , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad
4.
Acta Neuropathol ; 137(1): 47-69, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30450515

RESUMEN

Insoluble aggregates containing TDP-43 are widely observed in the diseased brain, and defined as "TDP-43 pathology" in a spectrum of neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), Alzheimer's disease and ALS with frontotemporal dementia. Here we report that Betz cells of patients with TDP-43 pathology display a distinct set of intracellular defects especially at the site of nuclear membrane, mitochondria and endoplasmic reticulum (ER). Numerous TDP-43 mouse models have been generated to discern the cellular and molecular basis of the disease, but mechanisms of neuronal vulnerability remain unknown. In an effort to define the underlying causes of corticospinal motor neuron (CSMN) degeneration, we generated and characterized a novel CSMN reporter line with TDP-43 pathology, the prp-TDP-43A315T-UeGFP mice. We find that TDP-43 pathology related intracellular problems emerge very early in the disease. The Betz cells in humans and CSMN in mice both have impaired mitochondria, and display nuclear membrane and ER defects with respect to TDP-43 pathology.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Membrana Nuclear/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Humanos , Ratones Transgénicos , Mitocondrias/patología , Neuronas Motoras/patología
5.
J Neuroinflammation ; 14(1): 129, 2017 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-28651542

RESUMEN

BACKGROUND: Recent evidence indicates the importance of innate immunity and neuroinflammation with microgliosis in amyotrophic lateral sclerosis (ALS) pathology. The MCP1 (monocyte chemoattractant protein-1) and CCR2 (CC chemokine receptor 2) signaling system has been strongly associated with the innate immune responses observed in ALS patients, but the motor cortex has not been studied in detail. METHODS: After revealing the presence of MCP1 and CCR2 in the motor cortex of ALS patients, to elucidate, visualize, and define the timing, location and the extent of immune response in relation to upper motor neuron vulnerability and progressive degeneration in ALS, we developed MCP1-CCR2-hSOD1G93A mice, an ALS reporter line, in which cells expressing MCP1 and CCR2 are genetically labeled by monomeric red fluorescent protein-1 and enhanced green fluorescent protein, respectively. RESULTS: In the motor cortex of MCP1-CCR2-hSOD1G93A mice, unlike in the spinal cord, there was an early increase in the numbers of MCP1+ cells, which displayed microglial morphology and selectively expressed microglia markers. Even though fewer CCR2+ cells were present throughout the motor cortex, they were mainly infiltrating monocytes. Interestingly, MCP1+ cells were found in close proximity to the apical dendrites and cell bodies of corticospinal motor neurons (CSMN), further implicating the importance of their cellular interaction to neuronal pathology. Similar findings were observed in the motor cortex of ALS patients, where MCP1+ microglia were especially in close proximity to the degenerating apical dendrites of Betz cells. CONCLUSIONS: Our findings reveal that the intricate cellular interplay between immune cells and upper motor neurons observed in the motor cortex of ALS mice is indeed recapitulated in ALS patients. We generated and characterized a novel model system, to study the cellular and molecular basis of this close cellular interaction and how that relates to motor neuron vulnerability and progressive degeneration in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/inmunología , Esclerosis Amiotrófica Lateral/patología , Inmunidad Innata/inmunología , Corteza Motora/inmunología , Corteza Motora/patología , Anciano , Anciano de 80 o más Años , Esclerosis Amiotrófica Lateral/genética , Animales , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/inmunología , Microglía/patología , Persona de Mediana Edad
6.
Sci Rep ; 7: 41765, 2017 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-28165465

RESUMEN

Apical dendrites of Betz cells are important sites for the integration of cortical input, however their health has not been fully assessed in ALS patients. We investigated the primary motor cortices isolated from post-mortem normal control subjects, patients with familial ALS (fALS), sporadic ALS (sALS), ALS with frontotemporal dementia (FTD-ALS), and Alzheimer's disease (AD), and found profound apical dendrite degeneration of Betz cells in both fALS and sALS, as well as FTD-ALS patients. In contrast, Betz cells of AD patients and normal controls retain cellular integrity in the motor cortex, and CA1 pyramidal neurons show abnormalities predominantly within their soma, rather than the apical dendrite. In line with extensive vacuolation and cytoarchitectural disintegration, the numbers of synapses were also significantly reduced only in ALS patients. Our findings indicate apical dendrite degeneration as a novel cellular pathology that distinguishes ALS and further support the importance of cortical dysfunction for disease pathology.


Asunto(s)
Esclerosis Amiotrófica Lateral/etiología , Esclerosis Amiotrófica Lateral/patología , Dendritas/metabolismo , Dendritas/patología , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Microscopía Fluorescente , Persona de Mediana Edad , Corteza Motora/citología , Corteza Motora/metabolismo , Enfermedades Neurodegenerativas , Células Piramidales/metabolismo , Células Piramidales/patología
7.
Ann Clin Transl Neurol ; 3(5): 331-45, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27231703

RESUMEN

OBJECTIVE: The aim of this study was to investigate the role of ubiquitin C-terminal hydrolase-L1 (UCHL1) for motor neuron circuitry and especially in spinal motor neuron (SMN) health, function, and connectivity. METHODS: Since mutations in UCHL1 gene leads to motor dysfunction in patients, we investigated the role of UCHL1 on SMN survival, axon health, and connectivity with the muscle, by employing molecular and cellular marker expression analysis and electrophysiological recordings, in healthy wild-type and Uchl1 (nm3419) (UCHL1-/-) mice, which lack all UCHL1 function. RESULTS: There is pure motor neuropathy with selective degeneration of the motor, but not sensory axons in the absence of UCHL1 function. Neuromuscular junctions (NMJ) are impaired in muscle groups that are innervated by slow-twitch or fast-twitch SMN. However, unlike corticospinal motor neurons, SMN cell bodies remain intact with no signs of elevated endoplasmic reticulum (ER) stress. INTERPRETATION: Presence of NMJ defects and progressive retrograde axonal degeneration in the absence of major SMN soma loss suggest that defining pathology as a function of neuron number is misleading and that upper and lower motor neurons utilize UCHL1 function in different cellular events. In line with findings in patients with mutations in UCHL1 gene, our results suggest a unique role of UCHL1, especially for motor neuron circuitry. SMN require UCHL1 to maintain NMJ and motor axon health, and that observed motor dysfunction in the absence of UCHL1 is not due to SMN loss, but mostly due to disintegrated circuitry.

8.
Hum Mol Genet ; 25(6): 1074-87, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26755825

RESUMEN

Mutations in the ALS2 gene result in early-onset amyotrophic lateral sclerosis, infantile-onset ascending hereditary spastic paraplegia and juvenile primary lateral sclerosis, suggesting prominent upper motor neuron involvement. However, the importance of alsin function for corticospinal motor neuron (CSMN) health and stability remains unknown. To date, four separate alsin knockout (Alsin(KO)) mouse models have been generated, and despite hopes of mimicking human pathology, none displayed profound motor function defects. This, however, does not rule out the possibility of neuronal defects within CSMN, which is not easy to detect in these mice. Detailed cellular analysis of CSMN has been hampered due to their limited numbers and the complex and heterogeneous structure of the cerebral cortex. In an effort to visualize CSMN in vivo and to investigate precise aspects of neuronal abnormalities in the absence of alsin function, we generated Alsin(KO)-UeGFP mice, by crossing Alsin(KO) and UCHL1-eGFP mice, a CSMN reporter line. We find that CSMN display vacuolated apical dendrites with increased autophagy, shrinkage of soma size and axonal pathology even in the pons region. Immunocytochemistry coupled with electron microscopy reveal that alsin is important for maintaining cellular cytoarchitecture and integrity of cellular organelles. In its absence, CSMN displays selective defects both in mitochondria and Golgi apparatus. UCHL1-eGFP mice help understand the underlying cellular factors that lead to CSMN vulnerability in diseases, and our findings reveal unique importance of alsin function for CSMN health and stability.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/deficiencia , Neuronas Motoras/metabolismo , Tractos Piramidales/patología , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Autofagia/fisiología , Axones/patología , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Dendritas/metabolismo , Modelos Animales de Enfermedad , Femenino , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Ratones , Ratones Noqueados , Enfermedad de la Neurona Motora/genética , Enfermedad de la Neurona Motora/metabolismo , Enfermedad de la Neurona Motora/patología , Neuronas Motoras/patología , Mutación , Tractos Piramidales/metabolismo , Paraplejía Espástica Hereditaria/genética , Paraplejía Espástica Hereditaria/metabolismo , Paraplejía Espástica Hereditaria/patología
9.
Cereb Cortex ; 25(11): 4259-72, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25596590

RESUMEN

Corticospinal motor neurons (CSMN) receive, integrate, and relay cerebral cortex's input toward spinal targets to initiate and modulate voluntary movement. CSMN degeneration is central for numerous motor neuron disorders and neurodegenerative diseases. Previously, 5 patients with mutations in the ubiquitin carboxy-terminal hydrolase-L1 (UCHL1) gene were reported to have neurodegeneration and motor neuron dysfunction with upper motor neuron involvement. To investigate the role of UCHL1 on CSMN health and stability, we used both in vivo and in vitro approaches, and took advantage of the Uchl1(nm3419) (UCHL1(-/-)) mice, which lack all UCHL1 function. We report a unique role of UCHL1 in maintaining CSMN viability and cellular integrity. CSMN show early, selective, progressive, and profound cell loss in the absence of UCHL1. CSMN degeneration, evident even at pre-symptomatic stages by disintegration of the apical dendrite and spine loss, is mediated via increased ER stress. These findings bring a novel understanding to the basis of CSMN vulnerability, and suggest UCHL1(-/-) mice as a tool to study CSMN pathology.


Asunto(s)
Estrés del Retículo Endoplásmico/genética , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Médula Espinal/citología , Ubiquitina Tiolesterasa/deficiencia , Vías Aferentes/fisiología , Factores de Edad , Animales , Animales Recién Nacidos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica/genética , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Corteza Motora/metabolismo , Fuerza Muscular/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Ubiquitina Tiolesterasa/genética
10.
Front Neuroanat ; 8: 16, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24723858

RESUMEN

Corticospinal motor neurons (CSMN) have a unique ability to receive, integrate, translate, and transmit the cerebral cortex's input toward spinal cord targets and therefore act as a "spokesperson" for the initiation and modulation of voluntary movements that require cortical input. CSMN degeneration has an immense impact on motor neuron circuitry and is one of the underlying causes of numerous neurodegenerative diseases, such as primary lateral sclerosis (PLS), hereditary spastic paraplegia (HSP), and amyotrophic lateral sclerosis (ALS). In addition, CSMN death results in long-term paralysis in spinal cord injury patients. Detailed cellular analyses are crucial to gain a better understanding of the pathologies underlying CSMN degeneration. However, visualizing and identifying these vulnerable neuron populations in the complex and heterogeneous environment of the cerebral cortex have proved challenging. Here, we will review recent developments and current applications of novel strategies that reveal the cellular and molecular basis of CSMN health and vulnerability. Such studies hold promise for building long-term effective treatment solutions in the near future.

11.
Cell Biochem Biophys ; 67(1): 45-53, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23695785

RESUMEN

Ubiquitin proteasome system (UPS) determines the timing and extent of protein turnover in cells, and it is one of the most strictly controlled cellular mechanisms. Lack of proper control over UPS is attributed to both cancer and to neurodegenerative diseases, yet in different context and direction. Cancerous cells have altered cellular metabolisms, uncontrolled cellular division, and increased proteasome activity. The specialized function prevent neurons from undergoing cellular division but allow them to extend an axon over long distances, establish connections, and to form stable neuronal circuitries. Neurons heavily depend on the proper function of the proteasome and the UPS for their proper function. Reduction of UPS function in vulnerable neurons results in protein aggregation, increased ER stress, and cell death. Identification of compounds that selectively block proteasome function in distinct set of malignancies added momentum to drug discovery efforts, and deubiquitinases (DUBs) gained much attention. This review will focus on ubiquitin carboxy-terminal hydrolase L1 (UCHL1), a DUB that is attributed to both cancer and neurodegeneration. The potential of developing effective treatment strategies for two major health problems by controlling the function of UPS opens up new avenues for innovative approaches and therapeutic interventions.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Mapas de Interacción de Proteínas , Ubiquitina Tiolesterasa/antagonistas & inhibidores , Proteasas Ubiquitina-Específicas/metabolismo
12.
J Neurosci ; 33(18): 7890-904, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23637180

RESUMEN

Understanding mechanisms that lead to selective motor neuron degeneration requires visualization and cellular identification of vulnerable neurons. Here we report generation and characterization of UCHL1-eGFP and hSOD1(G93A)-UeGFP mice, novel reporter lines for cortical and spinal motor neurons. Corticospinal motor neurons (CSMN) and a subset of spinal motor neurons (SMN) are genetically labeled in UCHL1-eGFP mice, which express eGFP under the UCHL1 promoter. eGFP expression is stable and continues through P800 in vivo. Retrograde labeling, molecular marker expression, electrophysiological analysis, and cortical circuit mapping confirmed CSMN identity of eGFP(+) neurons in the motor cortex. Anatomy, molecular marker expression, and electrophysiological analysis revealed that the eGFP expression is restricted to a subset of small-size SMN that are slow-twitch α and γ motor neurons. Crossbreeding of UCHL1-eGFP and hSOD1(G93A) lines generated hSOD1(G93A)-UeGFP mice, which displayed the disease phenotype observed in a hSOD1(G93A) mouse model of ALS. eGFP(+) SMN showed resistance to degeneration in hSOD1(G93A)-UeGFP mice, and their slow-twitch α and γ motor neuron identity was confirmed. In contrast, eGFP(+) neurons in the motor cortex of hSOD1(G93A)-UeGFP mice recapitulated previously reported progressive CSMN loss and apical dendrite degeneration. Our findings using these two novel reporter lines revealed accumulation of autophagosomes along the apical dendrites of vulnerable CSMN at P60, early symptomatic stage, suggesting autophagy as a potential intrinsic mechanism for CSMN apical dendrite degeneration.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Proteínas Fluorescentes Verdes/metabolismo , Neuronas Motoras/patología , Médula Espinal/patología , Factores de Edad , Análisis de Varianza , Animales , Animales Recién Nacidos , Dendritas/metabolismo , Dendritas/patología , Modelos Animales de Enfermedad , Proteínas Fluorescentes Verdes/genética , Proteínas de Homeodominio/genética , Técnicas In Vitro , Rayos Láser , Masculino , Potenciales de la Membrana/genética , Potenciales de la Membrana/fisiología , Ratones , Ratones Transgénicos , Neuronas Motoras/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Vías Nerviosas/patología , Técnicas de Placa-Clamp , Estimulación Luminosa , Superóxido Dismutasa/genética , Factores de Transcripción/genética , Ubiquitina Tiolesterasa
13.
Neurobiol Dis ; 47(2): 174-83, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22521461

RESUMEN

Corticospinal motor neurons (CSMN) are the cortical component of motor neuron circuitry, which controls voluntary movement and degenerates in diseases such as amyotrophic lateral sclerosis, primary lateral sclerosis and hereditary spastic paraplegia. By using dual labeling combined with molecular marker analysis, we identified AAV2-2 mediated retrograde transduction as an effective approach to selectively target CSMN without affecting other neuron populations both in wild-type and hSOD1(G93A) transgenic ALS mice. This approach reveals very precise details of cytoarchitectural defects within vulnerable neurons in vivo. We report that CSMN vulnerability is marked by selective degeneration of apical dendrites especially in layer II/III of the hSOD1(G93A) mouse motor cortex, where cortical input to CSMN function is vastly modulated. While our findings confirm the presence of astrogliosis and microglia activation, they do not lend support to their direct role for the initiation of CSMN vulnerability. This study enables development of targeted gene replacement strategies to CSMN in the cerebral cortex, and reveals CSMN cortical modulation defects as a potential cause of neuronal vulnerability in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/virología , Dendritas/patología , Dependovirus/fisiología , Neuronas Motoras/patología , Tractos Piramidales/patología , Transducción de Señal/fisiología , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Dendritas/química , Dendritas/virología , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas Motoras/metabolismo , Neuronas Motoras/virología , Tractos Piramidales/metabolismo , Tractos Piramidales/virología
14.
J Neurochem ; 100(5): 1407-20, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17241124

RESUMEN

Multiple cytokines are secreted in the brain during pro-inflammatory conditions and likely affect neuron survival. Previously, we demonstrated that glutamate and tumor necrosis factor alpha (TNFalpha) kill neurons via activation of the N-methyl-d-aspartate (NMDA) and TNFalpha receptors, respectively. This report continues characterizing the signaling cross-talk pathway initiated during this inflammation-related mechanism of death. Stimulation of mouse cortical neuron cultures with TNFalpha results in a transient increase in NMDA receptor-dependent calcium influx that is additive with NMDA stimulation and inhibited by pre-treatment with the NMDA receptor antagonist, DL-2-amino-5-phosphonovaleric acid, or the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainate receptor antagonist, 6,7-dinitroquinoxaline-2,3-dione. Pre-treatment with N-type calcium channel antagonist, omega-conotoxin, or the voltage-gated sodium channel antagonist, tetrodotoxin, also prevents the TNFalpha-stimulated calcium influx. Combined TNFalpha and NMDA stimulation results in a transient increase in activity of extracellular signal-regulated kinases (ERKs) and c-Jun N-terminal kinases (JNKs). Specific inhibition of ERKs but not JNKs is protective against TNFalpha and NMDA-dependent death. Death is mediated via the low-affinity TNFalpha receptor, TNFRII, as agonist antibodies for TNFRII but not TNFRI stimulate NMDA receptor-dependent calcium influx and death. These data demonstrate how microglial pro-inflammatory secretions including TNFalpha can acutely facilitate glutamate-dependent neuron death.


Asunto(s)
Corteza Cerebral/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/fisiología , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Factor de Necrosis Tumoral alfa/fisiología , Animales , Muerte Celular , Células Cultivadas , Corteza Cerebral/citología , Activación Enzimática , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Ratones , Neuronas/citología , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores Tipo I de Factores de Necrosis Tumoral/fisiología , Receptores Tipo II del Factor de Necrosis Tumoral/fisiología , Factor de Necrosis Tumoral alfa/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...