Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
mBio ; 11(6)2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33293379

RESUMEN

Subversion of heparan sulfate proteoglycans (HSPGs) is thought to be a common virulence mechanism shared by many microbial pathogens. The prevailing assumption is that pathogens co-opt HSPGs as cell surface attachment receptors or as inhibitors of innate host defense. However, there are few data that clearly support this idea in vivo We found that deletion of syndecan-1 (Sdc1), a major cell surface HSPG of epithelial cells, causes a gain of function in a mouse model of scarified corneal infection, where Sdc1-/- corneas were significantly less susceptible to Streptococcus pneumoniae infection. Administration of excess Sdc1 ectodomains significantly inhibited S. pneumoniae corneal infection, suggesting that Sdc1 promotes infection as a cell surface attachment receptor. However, S. pneumoniae did not interact with Sdc1 and Sdc1 was shed upon S. pneumoniae infection, indicating that Sdc1 does not directly support S. pneumoniae adhesion. Instead, Sdc1 promoted S. pneumoniae adhesion by driving the assembly of fibronectin (FN) fibrils in the corneal basement membrane to which S. pneumoniae attaches when infecting injured corneas. S. pneumoniae specifically bound to corneal FN via PavA, and PavA deletion significantly attenuated S. pneumoniae virulence in the cornea. Excess Sdc1 ectodomains inhibited S. pneumoniae corneal infection by binding to the Hep II domain and interfering with S. pneumoniae PavA binding to FN. These findings reveal a previously unknown virulence mechanism of S. pneumoniae where key extracellular matrix (ECM) interactions and structures that are essential for host cell homeostasis are exploited for bacterial pathogenesis.IMPORTANCE Bacterial pathogens have evolved several ingenious mechanisms to subvert host cell biology for their pathogenesis. Bacterial attachment to the host ECM establishes a niche to grow and is considered one of the critical steps of infection. This pathogenic mechanism entails coordinated assembly of the ECM by the host to form the ECM structure and organization that are specifically recognized by bacteria for their adhesion. We serendipitously discovered that epithelial Sdc1 facilitates the assembly of FN fibrils in the corneal basement membrane and that this normal biological function of Sdc1 has detrimental consequences for the host in S. pneumoniae corneal infection. Our studies suggest that bacterial subversion of the host ECM is more complex than previously appreciated.


Asunto(s)
Fibronectinas/metabolismo , Interacciones Huésped-Patógeno , Queratitis/metabolismo , Queratitis/microbiología , Streptococcus pneumoniae/fisiología , Sindecano-1/metabolismo , Animales , Adhesión Bacteriana , Córnea/metabolismo , Córnea/microbiología , Córnea/patología , Modelos Animales de Enfermedad , Matriz Extracelular/metabolismo , Técnica del Anticuerpo Fluorescente , Mutación con Ganancia de Función , Expresión Génica , Proteoglicanos de Heparán Sulfato/genética , Proteoglicanos de Heparán Sulfato/metabolismo , Interacciones Huésped-Patógeno/genética , Inmunohistoquímica , Queratitis/patología , Ratones , Ratones Noqueados , Sindecano-1/genética
2.
J Biol Chem ; 295(19): 6689-6699, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32229583

RESUMEN

The cell surfaces of many bacteria carry filamentous polypeptides termed adhesins that enable binding to both biotic and abiotic surfaces. Surface adherence is facilitated by the exquisite selectivity of the adhesins for their cognate ligands or receptors and is a key step in niche or host colonization and pathogenicity. Streptococcus gordonii is a primary colonizer of the human oral cavity and an opportunistic pathogen, as well as a leading cause of infective endocarditis in humans. The fibrillar adhesin CshA is an important determinant of S. gordonii adherence, forming peritrichous fibrils on its surface that bind host cells and other microorganisms. CshA possesses a distinctive multidomain architecture comprising an N-terminal target-binding region fused to 17 repeat domains (RDs) that are each ∼100 amino acids long. Here, using structural and biophysical methods, we demonstrate that the intact CshA repeat region (CshA_RD1-17, domains 1-17) forms an extended polymeric monomer in solution. We recombinantly produced a subset of CshA RDs and found that they differ in stability and unfolding behavior. The NMR structure of CshA_RD13 revealed a hitherto unreported all ß-fold, flanked by disordered interdomain linkers. These findings, in tandem with complementary hydrodynamic studies of CshA_RD1-17, indicate that this polypeptide possesses a highly unusual dynamic transitory structure characterized by alternating regions of order and disorder. This architecture provides flexibility for the adhesive tip of the CshA fibril to maintain bacterial attachment that withstands shear forces within the human host. It may also help mitigate deleterious folding events between neighboring RDs that share significant structural identity without compromising mechanical stability.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de la Membrana/química , Multimerización de Proteína , Secuencia de Aminoácidos , Modelos Moleculares , Dominios Proteicos , Estructura Cuaternaria de Proteína , Secuencias Repetitivas de Aminoácido
3.
PLoS Pathog ; 15(6): e1007848, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31181121

RESUMEN

Streptococcus agalactiae (Group B Streptococcus, GBS) normally colonizes healthy adults but can cause invasive disease, such as meningitis, in the newborn. To gain access to the central nervous system, GBS must interact with and penetrate brain or meningeal blood vessels; however, the exact mechanisms are still being elucidated. Here, we investigate the contribution of BspC, an antigen I/II family adhesin, to the pathogenesis of GBS meningitis. Disruption of the bspC gene reduced GBS adherence to human cerebral microvascular endothelial cells (hCMEC), while heterologous expression of BspC in non-adherent Lactococcus lactis conferred bacterial attachment. In a murine model of hematogenous meningitis, mice infected with ΔbspC mutants exhibited lower mortality as well as decreased brain bacterial counts and inflammatory infiltrate compared to mice infected with WT GBS strains. Further, BspC was both necessary and sufficient to induce neutrophil chemokine expression. We determined that BspC interacts with the host cytoskeleton component vimentin and confirmed this interaction using a bacterial two-hybrid assay, microscale thermophoresis, immunofluorescent staining, and imaging flow cytometry. Vimentin null mice were protected from WT GBS infection and also exhibited less inflammatory cytokine production in brain tissue. These results suggest that BspC and the vimentin interaction is critical for the pathogenesis of GBS meningitis.


Asunto(s)
Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Encéfalo/metabolismo , Meningitis Bacterianas/metabolismo , Infecciones Estreptocócicas/metabolismo , Streptococcus agalactiae/metabolismo , Vimentina/metabolismo , Animales , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Encéfalo/irrigación sanguínea , Encéfalo/microbiología , Encéfalo/patología , Endotelio Vascular , Células HeLa , Humanos , Masculino , Meningitis Bacterianas/genética , Meningitis Bacterianas/patología , Ratones , Ratones Mutantes , Ovinos , Infecciones Estreptocócicas/genética , Infecciones Estreptocócicas/patología , Streptococcus agalactiae/genética , Streptococcus agalactiae/patogenicidad , Vimentina/genética
4.
PLoS One ; 13(12): e0208317, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30513116

RESUMEN

Saliva contains many proteins that have an important role in biological process of the oral cavity and is closely associated with many diseases. Although the dog is a common companion animal, the composition of salivary proteome and its relationship with that of human are unclear. In this study, shotgun proteomics was used to compare the salivary proteomes of 7 Thai village dogs and 7 human subjects. Salivary proteomes revealed 2,532 differentially expressed proteins in dogs and humans, representing various functions including cellular component organization or biogenesis, cellular process, localization, biological regulation, response to stimulus, developmental process, multicellular organismal process, metabolic process, immune system process, apoptosis and biological adhesion. The oral proteomes of dogs and humans were appreciably different. Proteins related to apoptosis processes and biological adhesion were predominated in dog saliva. Drug-target network predictions by STITCH Version 5.0 showed that dog salivary proteins were found to have potential roles in tumorigenesis, anti-inflammation and antimicrobial processes. In addition, proteins related to regeneration and healing processes such as fibroblast growth factor and epidermal growth factor were also up-regulated in dogs. These findings provide new information on dog saliva composition and will be beneficial for the study of dog saliva in diseased and health conditions in the future.


Asunto(s)
Proteómica/métodos , Saliva/metabolismo , Proteínas y Péptidos Salivales/metabolismo , Secuencia de Aminoácidos , Animales , Perros , Humanos , Proteínas y Péptidos Salivales/química
6.
mBio ; 9(2)2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29691333

RESUMEN

The pleiomorphic yeast Candida albicans is a significant pathogen in immunocompromised individuals. In the oral cavity, C. albicans is an inhabitant of polymicrobial communities, and interspecies interactions promote hyphal formation and biofilm formation. C. albicans colonizes the subgingival area, and the frequency of colonization increases in periodontal disease. In this study, we investigated the interactions between C. albicans and the periodontal pathogen Porphyromonas gingivalisC. albicans and P. gingivalis were found to coadhere in both the planktonic and sessile phases. Loss of the internalin-family protein InlJ abrogated adhesion of P. gingivalis to C. albicans, and recombinant InlJ protein competitively inhibited interspecies binding. A mutant of C. albicans deficient in expression of major hyphal protein Als3 showed diminished binding to P. gingivalis, and InlJ interacted with Als3 heterologously expressed in Saccharomyces cerevisiae Transcriptional profiling by RNA sequencing (RNA-Seq) established that 57 genes were uniquely upregulated in an InlJ-dependent manner in P. gingivalis-C. albicans communities, with overrepresentation of those corresponding to 31 gene ontology terms, including those associated with growth and division. Of potential relevance to the disease process, C. albicans induced upregulation of components of the type IX secretion apparatus. Collectively, these findings indicate that InlJ-Als3-dependent binding facilitates interdomain community development between C. albicans and P. gingivalis and that P. gingivalis has the potential for increased virulence within such communities.IMPORTANCE Many diseases involve the concerted actions of microorganisms assembled in polymicrobial communities. Inflammatory periodontal diseases are among the most common infections of humans and result in destruction of gum tissue and, ultimately, in loss of teeth. In periodontal disease, pathogenic communities can include the fungus Candida albicans; however, the contribution of C. albicans to the synergistic virulence of the community is poorly understood. Here we characterize the interactions between C. albicans and the keystone bacterial pathogen Porphyromonas gingivalis and show that coadhesion mediated by specific proteins results in major changes in gene expression by P. gingivalis, which could serve to increase pathogenic potential. The work provides significant insights into interdomain interactions that can enhance our understanding of diseases involving a multiplicity of microbial pathogens.


Asunto(s)
Proteínas Bacterianas/metabolismo , Candida albicans/fisiología , Proteínas Fúngicas/metabolismo , Interacciones Microbianas , Porphyromonas gingivalis/fisiología , Biopelículas/crecimiento & desarrollo , Adhesión Celular , Perfilación de la Expresión Génica , Humanos , Unión Proteica
7.
Infect Immun ; 86(4)2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29339458

RESUMEN

Group B Streptococcus (GBS) is a leading cause of neonatal sepsis, pneumonia, and meningitis worldwide. In the majority of cases, GBS is transmitted vertically from mother to neonate, making maternal vaginal colonization a key risk factor for neonatal disease. The fungus Candida albicans is an opportunistic pathogen of the female genitourinary tract and the causative agent of vaginal thrush. Carriage of C. albicans has been shown to be an independent risk factor for vaginal colonization by GBS. However, the nature of interactions between these two microbes is poorly understood. This study provides evidence of a reciprocal, synergistic interplay between GBS and C. albicans that may serve to promote their cocolonization of the vaginal mucosa. GBS strains NEM316 (serotype III) and 515 (serotype Ia) are shown to physically interact with C. albicans, with the bacteria exhibiting tropism for candidal hyphal filaments. This interaction enhances association levels of both microbes with the vaginal epithelial cell line VK2/E6E7. The ability of GBS to coassociate with C. albicans is dependent upon expression of the hypha-specific adhesin Als3. In turn, expression of GBS antigen I/II family adhesins (Bsp polypeptides) facilitates this coassociation and confers upon surrogate Lactococcus lactis the capacity to exhibit enhanced interactions with C. albicans on vaginal epithelium. As genitourinary tract colonization is an essential first step in the pathogenesis of GBS and C. albicans, the coassociation mechanism reported here may have important implications for the risk of disease involving both of these pathogens.


Asunto(s)
Candida albicans/inmunología , Interacciones Microbianas , Membrana Mucosa/inmunología , Membrana Mucosa/microbiología , Streptococcus agalactiae/inmunología , Vagina/inmunología , Vagina/microbiología , Adhesinas Bacterianas/metabolismo , Candida albicans/clasificación , Candida albicans/genética , Candidiasis/inmunología , Candidiasis/microbiología , Coinfección/inmunología , Coinfección/microbiología , Células Epiteliales/microbiología , Femenino , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Mutación , Infecciones Estreptocócicas/inmunología , Infecciones Estreptocócicas/microbiología , Streptococcus agalactiae/clasificación , Streptococcus agalactiae/genética
8.
Mol Microbiol ; 105(6): 839-859, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28657670

RESUMEN

Colonization of mucosal respiratory surfaces is a prerequisite for the human pathobiont Streptococcus pneumoniae (the pneumococcus) to cause severe invasive infections. The arsenal of pneumococcal adhesins interacts with a multitude of extracellular matrix proteins. A paradigm for pneumococci is their interaction with the adhesive glycoprotein fibronectin, which facilitates bacterial adherence to host cells. Here, we deciphered the molecular interaction between fibronectin and pneumococcal fibronectin-binding proteins (FnBPs) PavA and PavB respectively. We show in adherence and binding studies that the pneumococcal interaction with fibronectin is a non-human specific trait. PavA and PavB target at least 13 out of 15 type III fibronectin domains as demonstrated in ligand overlay assays, surface plasmon resonance studies and SPOT peptide arrays. Strikingly, both pneumococcal FnBPs recognize similar peptides in targeted type III repeats. Structural comparisons revealed that the targeted type III repeat epitopes cluster on the inner strands of both ß-sheets forming the fibronectin domains. Importantly, synthetic peptides of FnIII1 , FnIII5 or FnIII15 bind directly to FnBPs PavA and PavB respectively. In conclusion, our study suggests a common pattern of molecular interactions between pneumococcal FnBPs and fibronectin. The specific epitopes recognized in this study can potentially be tested as antimicrobial targets in further scientific endeavours.


Asunto(s)
Proteínas Bacterianas/metabolismo , Dominio de Fibronectina del Tipo III/fisiología , Fibronectinas/metabolismo , Adhesinas Bacterianas/metabolismo , Adhesión Bacteriana/genética , Adhesión Bacteriana/fisiología , Proteínas Bacterianas/genética , Proteínas Portadoras/metabolismo , Dominio de Fibronectina del Tipo III/genética , Interacciones Huésped-Patógeno , Humanos , Unión Proteica/genética , Unión Proteica/fisiología , Dominios Proteicos , Streptococcus pneumoniae/metabolismo , Factores de Virulencia/metabolismo
9.
Microbes Infect ; 19(7-8): 402-412, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28456649

RESUMEN

In Streptococcus pneumoniae TIGR4, genes encoding a SecY2A2 accessory Sec system are present within a locus encoding a serine-rich repeat surface protein PsrP. Mutant strains deleted in secA2 or psrP were deficient in biofilm formation, while the ΔsecA2 mutant was reduced in binding to airway epithelial cells. Cell wall protein (CWP) fractions from the ΔsecA2 mutant, but not from the ΔpsrP mutant, were reduced in haemolytic (pneumolysin) activity. Contact-dependent pneumolysin (Ply) activity of wild type TIGR4 cells was ten-fold greater than that of ΔsecA2 mutant cells suggesting that Ply was not active at the ΔsecA2 cell surface. Ply protein was found to be present in the CWP fraction from the ΔsecA2 mutant, but showed aberrant electrophoretic migration indicative of protein modification. Proteomic analyses led to the discovery that the ΔsecA2 mutant CWP fraction was deficient in two glycosidases as well as other enzymes involved in carbohydrate metabolism. Taken collectively the results suggest that positioning of Ply into the cell wall compartment in active form, together with glycosyl hydrolases and adhesins, requires a functional accessory Sec system.


Asunto(s)
Adhesión Bacteriana , Sistemas de Secreción Bacterianos/genética , Sistemas de Secreción Bacterianos/metabolismo , Biopelículas/crecimiento & desarrollo , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , Estreptolisinas/metabolismo , Proteínas Bacterianas/metabolismo , Eliminación de Gen , Humanos , Streptococcus pneumoniae/fisiología
10.
J Clin Microbiol ; 55(6): 1837-1846, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28356413

RESUMEN

An emm32.2 invasive group A streptococcus (iGAS) outbreak occurred in Liverpool from January 2010 to September 2012. This genotype had not previously been identified in Liverpool, but was responsible for 32% (14/44) of all iGAS cases reported during this time period. We performed a case-case comparison of emm32.2 iGAS cases with non-emm32.2 control iGAS cases identified in the Liverpool population over the same time period to assess patient risk factors for emm32.2 iGAS infection. The emm32.2 iGAS cases were confined to the adult population. We show that homelessness, intravenous drug use, and alcohol abuse predisposed patients to emm32.2 iGAS disease; however, no obvious epidemiological linkage between the patients with emm32.2 iGAS could be identified. Comparative whole-genome sequencing analysis of emm32.2 iGAS and non-emm32.2 control isolates was also performed to identify pathogen factors which might have driven the outbreak. We identified 19 genes, five of which had previously been implicated in virulence, which were present in all of the emm32.2 iGAS isolates but not present in any of the non-emm32.2 control isolates. We report that a novel emm32.2 genotype emerged in Liverpool in 2010 and identified a specific subset of genes, which could have allowed this novel emm32.2 genotype to persist in a disadvantaged population in the region over a 3-year period.


Asunto(s)
Antígenos Bacterianos/genética , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Portadoras/genética , Brotes de Enfermedades , Genotipo , Infecciones Estreptocócicas/epidemiología , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes/clasificación , Streptococcus pyogenes/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Epidemiología Molecular , Streptococcus pyogenes/aislamiento & purificación , Reino Unido/epidemiología , Secuenciación Completa del Genoma , Adulto Joven
11.
Cell Microbiol ; 19(1)2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27616700

RESUMEN

A range of Streptococcus bacteria are able to interact with blood platelets to form a thrombus (clot). Streptococcus gordonii is ubiquitous within the human oral cavity and amongst the common pathogens isolated from subjects with infective endocarditis. Two cell surface proteins, Hsa and Platelet adherence protein A (PadA), in S. gordonii mediate adherence and activation of platelets. In this study, we demonstrate that PadA binds activated platelets and that an NGR (Asparagine-Glycine-Arginine) motif within a 657 amino acid residue N-terminal fragment of PadA is responsible for this, together with two other integrin-like recognition motifs RGT and AGD. PadA also acts in concert with Hsa to mediate binding of S. gordonii to cellular fibronectin and vitronectin, and to promote formation of biofilms. Evidence is presented that PadA and Hsa are each reliant on the other's active presentation on the bacterial cell surface, suggesting cooperativity in functions impacting both colonization and pathogenesis.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Portadoras/metabolismo , Matriz Extracelular/metabolismo , Interacciones Huésped-Patógeno , Activación Plaquetaria , Streptococcus gordonii/patogenicidad , Factores de Virulencia/metabolismo , Adhesión Bacteriana , Biopelículas/crecimiento & desarrollo , Hemaglutininas Virales , Humanos , Proteínas de la Membrana/metabolismo , Streptococcus gordonii/crecimiento & desarrollo , Streptococcus gordonii/fisiología
12.
J Biol Chem ; 292(5): 1538-1549, 2017 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-27920201

RESUMEN

Adherence of bacteria to biotic or abiotic surfaces is a prerequisite for host colonization and represents an important step in microbial pathogenicity. This attachment is facilitated by bacterial adhesins at the cell surface. Because of their size and often elaborate multidomain architectures, these polypeptides represent challenging targets for detailed structural and functional characterization. The multifunctional fibrillar adhesin CshA, which mediates binding to both host molecules and other microorganisms, is an important determinant of colonization by Streptococcus gordonii, an oral commensal and opportunistic pathogen of animals and humans. CshA binds the high-molecular-weight glycoprotein fibronectin (Fn) via an N-terminal non-repetitive region, and this protein-protein interaction has been proposed to promote S. gordonii colonization at multiple sites within the host. However, the molecular details of how these two proteins interact have yet to be established. Here we present a structural description of the Fn binding N-terminal region of CshA, derived from a combination of X-ray crystallography, small angle X-ray scattering, and complementary biophysical methods. In vitro binding studies support a previously unreported two-state "catch-clamp" mechanism of Fn binding by CshA, in which the disordered N-terminal domain of CshA acts to "catch" Fn, via formation of a rapidly assembled but also readily dissociable pre-complex, enabling its neighboring ligand binding domain to tightly clamp the two polypeptides together. This study presents a new paradigm for target binding by a bacterial adhesin, the identification of which will inform future efforts toward the development of anti-adhesive agents that target S. gordonii and related streptococci.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Proteínas Bacterianas/metabolismo , Fibronectinas/metabolismo , Proteínas de la Membrana/metabolismo , Streptococcus gordonii/metabolismo , Adhesinas Bacterianas/química , Adhesinas Bacterianas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Fibronectinas/química , Fibronectinas/genética , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Unión Proteica , Dominios Proteicos , Streptococcus gordonii/química , Streptococcus gordonii/genética
13.
J Biol Chem ; 291(41): 21474-21484, 2016 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-27551046

RESUMEN

The accessory Sec system in Streptococcus gordonii DL1 is a specialized export system that transports a large serine-rich repeat protein, Hsa, to the bacterial surface. The system is composed of core proteins SecA2 and SecY2 and accessory Sec proteins Asp1-Asp5. Similar to canonical SecYEG, SecY2 forms a channel for translocation of the Hsa adhesin across the cytoplasmic membrane. Accessory Sec proteins Asp4 and Asp5 have been suggested to work alongside SecY2 to form the translocon, similar to the associated SecY, SecE, and SecG of the canonical system (SecYEG). To test this theory, S. gordonii secY2, asp4, and asp5 were co-expressed in Escherichia coli The resultant complex was subsequently purified, and its composition was confirmed by mass spectrometry to be SecY2-Asp4-Asp5. Like SecYEG, the non-canonical complex activates the ATPase activity of the SecA motor (SecA2). This study also shows that Asp4 and Asp5 are necessary for optimal adhesion of S. gordonii to glycoproteins gp340 and fibronectin, known Hsa binding partners, as well as for early stage biofilm formation. This work opens new avenues for understanding the structure and function of the accessory Sec system.


Asunto(s)
Proteínas Bacterianas , Canales de Translocación SEC , Streptococcus gordonii , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Unión al Calcio , Proteínas de Unión al ADN , Humanos , Receptores de Superficie Celular/química , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Canales de Translocación SEC/química , Canales de Translocación SEC/genética , Canales de Translocación SEC/metabolismo , Streptococcus gordonii/química , Streptococcus gordonii/genética , Streptococcus gordonii/metabolismo , Proteínas Supresoras de Tumor
14.
J Biol Chem ; 291(31): 15985-6000, 2016 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-27311712

RESUMEN

Streptococcus agalactiae (group B Streptococcus, GBS) is the predominant cause of early-onset infectious disease in neonates and is responsible for life-threatening infections in elderly and immunocompromised individuals. Clinical manifestations of GBS infection include sepsis, pneumonia, and meningitis. Here, we describe BspA, a deviant antigen I/II family polypeptide that confers adhesive properties linked to pathogenesis in GBS. Heterologous expression of BspA on the surface of the non-adherent bacterium Lactococcus lactis confers adherence to scavenger receptor gp340, human vaginal epithelium, and to the fungus Candida albicans Complementary crystallographic and biophysical characterization of BspA reveal a novel ß-sandwich adhesion domain and unique asparagine-dependent super-helical stalk. Collectively, these findings establish a new bacterial adhesin structure that has in effect been hijacked by a pathogenic Streptococcus species to provide competitive advantage in human mucosal infections.


Asunto(s)
Adhesinas Bacterianas/química , Proteínas Bacterianas/química , Pared Celular/química , Proteínas de la Membrana/química , Streptococcus agalactiae/química , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Adhesión Bacteriana/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Candida albicans/genética , Candida albicans/metabolismo , Pared Celular/genética , Pared Celular/metabolismo , Femenino , Humanos , Lactococcus lactis/química , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Dominios Proteicos , Estructura Secundaria de Proteína , Streptococcus agalactiae/genética , Streptococcus agalactiae/metabolismo , Relación Estructura-Actividad
15.
J Appl Oral Sci ; 24(2): 126-35, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27119760

RESUMEN

Objective Bacterial penetration of dentinal tubules via exposed dentine can lead to root caries and promote infections of the pulp and root canal system. The aim of this work was to develop a new experimental model for studying bacterial invasion of dentinal tubules within the human oral cavity. Material and Methods Sections of human root dentine were mounted into lower oral appliances that were worn by four human subjects for 15 d. Roots were then fixed, sectioned, stained and examined microscopically for evidence of bacterial invasion. Levels of invasion were expressed as Tubule Invasion Factor (TIF). DNA was extracted from root samples, subjected to polymerase chain reaction amplification of 16S rRNA genes, and invading bacteria were identified by comparison of sequences with GenBank database. Results All root dentine samples with patent tubules showed evidence of bacterial cell invasion (TIF value range from 5.7 to 9.0) to depths of 200 mm or more. A spectrum of Gram-positive and Gram-negative cell morphotypes were visualized, and molecular typing identified species of Granulicatella, Streptococcus, Klebsiella, Enterobacter, Acinetobacter, and Pseudomonas as dentinal tubule residents. Conclusion A novel in vivo model is described, which provides for human root dentine to be efficiently infected by oral microorganisms. A range of bacteria were able to initially invade dentinal tubules within exposed dentine. The model will be useful for testing the effectiveness of antiseptics, irrigants, and potential tubule occluding agents in preventing bacterial invasion of dentine.


Asunto(s)
Bacterias/aislamiento & purificación , Cavidad Pulpar/microbiología , Dentina/microbiología , Raíz del Diente/microbiología , Biopelículas , ADN Bacteriano , Dentina/ultraestructura , Humanos , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S , Reproducibilidad de los Resultados , Propiedades de Superficie
16.
J. appl. oral sci ; 24(2): 126-135, Mar.-Apr. 2016. tab, graf
Artículo en Inglés | LILACS | ID: lil-779909

RESUMEN

ABSTRACT Objective Bacterial penetration of dentinal tubules via exposed dentine can lead to root caries and promote infections of the pulp and root canal system. The aim of this work was to develop a new experimental model for studying bacterial invasion of dentinal tubules within the human oral cavity. Material and Methods Sections of human root dentine were mounted into lower oral appliances that were worn by four human subjects for 15 d. Roots were then fixed, sectioned, stained and examined microscopically for evidence of bacterial invasion. Levels of invasion were expressed as Tubule Invasion Factor (TIF). DNA was extracted from root samples, subjected to polymerase chain reaction amplification of 16S rRNA genes, and invading bacteria were identified by comparison of sequences with GenBank database. Results All root dentine samples with patent tubules showed evidence of bacterial cell invasion (TIF value range from 5.7 to 9.0) to depths of 200 mm or more. A spectrum of Gram-positive and Gram-negative cell morphotypes were visualized, and molecular typing identified species of Granulicatella, Streptococcus, Klebsiella, Enterobacter, Acinetobacter, and Pseudomonas as dentinal tubule residents. Conclusion A novel in vivo model is described, which provides for human root dentine to be efficiently infected by oral microorganisms. A range of bacteria were able to initially invade dentinal tubules within exposed dentine. The model will be useful for testing the effectiveness of antiseptics, irrigants, and potential tubule occluding agents in preventing bacterial invasion of dentine.


Asunto(s)
Humanos , Bacterias/aislamiento & purificación , Cavidad Pulpar/microbiología , Dentina/microbiología , Raíz del Diente/microbiología , Biopelículas , Dentina/ultraestructura , ADN Bacteriano , Reacción en Cadena de la Polimerasa , Reproducibilidad de los Resultados , ARN Ribosómico 16S , Propiedades de Superficie
17.
Pathog Dis ; 74(3)2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26755532

RESUMEN

Candida-associated stomatitis affects up to 60% of denture wearers, and Candida albicans remains the most commonly isolated fungal species. The oral bacteria Actinomyces oris and Streptococcus oralis are abundant in early dental plaque. The aims of this study were to determine the effects of S. oralis and A. oris on the development of C. albicans biofilms on denture material. Resin discs were coated with saliva and at early (1.5 h) or later (24 h) stages of biofilm development, cell numbers of each species were determined. Spatial distribution of microorganisms was visualized by confocal scanning laser microscopy of biofilms labelled by differential fluorescence or by fluorescence in situ hybridization. Interkingdom interactions underpinning biofilm development were also evaluated planktonically utilizing fluorescence microscopy. Synergistic interactions between all three species occurred within biofilms and planktonically. Bacterial cells coaggregated with each other and adhered singly or in coaggregates to C. albicans hyphal filaments. Streptococcus oralis appeared to enhance hyphal filament production and C. albicans biovolume was increased 2-fold. Concomitantly, cell numbers of S. oralis and A. oris were enhanced by C. albicans. Thus, cooperative physical and metabolic processes occurring between these three microbial species intensify pathogenic plaque communities on denture surfaces.


Asunto(s)
Actinomyces/crecimiento & desarrollo , Biopelículas/crecimiento & desarrollo , Candida albicans/crecimiento & desarrollo , Dentaduras/microbiología , Streptococcus oralis/crecimiento & desarrollo , Simbiosis/fisiología , Adulto , Humanos , Hibridación Fluorescente in Situ , Consorcios Microbianos/fisiología , Microscopía Confocal , Saliva , Estomatitis Subprotética/microbiología
18.
Pathog Dis ; 74(3)2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26772652

RESUMEN

The fungus Candida albicans colonizes oral cavity surfaces and is carried by up to 60% of human populations. Biofilm development by C. albicans may be modulated by oral streptococci, such as Streptococcus gordonii, S. oralis or S. mutans, so as to augment pathogenicity. In this study we sought to determine if the cell wall-associated secreted aspartyl proteinase Sap9 was necessary for hyphal adhesin functions associated with biofilm community development. A sap9Δ mutant of C. albicans SC5314 formed biofilms that were flatter, and contained fewer blastospores and more hyphal filaments than the parent strain. This phenotypic difference was accentuated under flow (shear) conditions and in the presence of S. gordonii. Dual-species biofilms of C. albicans sap9Δ with S. oralis, S. sanguinis, S. parasanguinis, S. mutans and Enterococcus faecalis all contained more matted hyphae and more bacteria bound to substratum compared to C. albicans wild type. sap9Δ mutant hyphae showed significantly increased cell surface hydrophobicity, ∼25% increased levels of binding C. albicans cell wall protein Als3, and reduced interaction with Eap1, implicating Sap9 in fungal cell-cell recognition. These observations suggest that Sap9 is associated with protein-receptor interactions between fungal cells, and with interkingdom communication in the formation of polymicrobial biofilm communities.


Asunto(s)
Ácido Aspártico Endopeptidasas/metabolismo , Biopelículas/crecimiento & desarrollo , Candida albicans/metabolismo , Enterococcus faecalis/metabolismo , Proteínas Fúngicas/metabolismo , Streptococcus gordonii/metabolismo , Streptococcus mutans/metabolismo , Adulto , Ácido Aspártico Endopeptidasas/genética , Candida albicans/genética , Candida albicans/patogenicidad , Proteínas Fúngicas/genética , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Hifa/metabolismo , Interacciones Microbianas/fisiología , Microscopía Confocal , Boca/microbiología
19.
Cell Microbiol ; 18(6): 844-58, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26639759

RESUMEN

The oral anaerobe Porphyromonas gingivalis is associated with the development of cancers including oral squamous cell carcinoma (OSCC). Here, we show that infection of gingival epithelial cells with P. gingivalis induces expression and nuclear localization of the ZEB1 transcription factor, which controls epithelial-mesenchymal transition. P. gingivalis also caused an increase in ZEB1 expression as a dual species community with Fusobacterium nucleatum or Streptococcus gordonii. Increased ZEB1 expression was associated with elevated ZEB1 promoter activity and did not require suppression of the miR-200 family of microRNAs. P. gingivalis strains lacking the FimA fimbrial protein were attenuated in their ability to induce ZEB1 expression. ZEB1 levels correlated with an increase in expression of mesenchymal markers, including vimentin and MMP-9, and with enhanced migration of epithelial cells into matrigel. Knockdown of ZEB1 with siRNA prevented the P. gingivalis-induced increase in mesenchymal markers and epithelial cell migration. Oral infection of mice by P. gingivalis increased ZEB1 levels in gingival tissues, and intracellular P. gingivalis were detected by antibody staining in biopsy samples from OSCC. These findings indicate that FimA-driven ZEB1 expression could provide a mechanistic basis for a P. gingivalis contribution to OSCC.


Asunto(s)
Encía/microbiología , Porphyromonas gingivalis/patogenicidad , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Animales , Infecciones por Bacteroidaceae/metabolismo , Infecciones por Bacteroidaceae/microbiología , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/microbiología , Movimiento Celular , Células Epiteliales/microbiología , Células Epiteliales/patología , Transición Epitelial-Mesenquimal , Fimbrias Bacterianas/metabolismo , Regulación de la Expresión Génica , Encía/citología , Encía/metabolismo , Interacciones Huésped-Patógeno , Humanos , Queratinocitos/microbiología , Queratinocitos/patología , Ratones Endogámicos BALB C , MicroARNs/genética , Neoplasias de la Boca/microbiología , Porphyromonas gingivalis/genética , Regiones Promotoras Genéticas , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética
20.
J Mater Sci Mater Med ; 26(6): 201, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26123234

RESUMEN

Dental implants are an increasingly popular solution to missing teeth. Implants are prone to colonisation by pathogenic oral bacteria which can lead to inflammation, destruction of bone and ultimately implant failure. The aim of this study was to investigate the use of chlorhexidine (CHX) hexametaphosphate (HMP) nanoparticles (NPs) with a total CHX concentration equivalent to 5 mM as a coating for dental implants. The CHX HMP NPs had mean diameter 49 nm and composition was confirmed showing presence of both chlorine and phosphorus. The NPs formed micrometer-sized aggregated surface deposits on commercially pure grade II titanium substrates following immersion-coating for 30 s. When CHX HMP NP-coated titanium specimens were immersed in deionised water, sustained release of soluble CHX was observed, both in the absence and presence of a salivary pellicle, for the duration of the study (99 days) without reaching a plateau. Control specimens exposed to a solution of aqueous 25 µM CHX (equivalent to the residual aqueous CHX present with the NPs) did not exhibit CHX release. CHX HMP NP-coated surfaces exhibited antimicrobial efficacy against oral primary colonising bacterium Streptococcus gordonii within 8 h. The antimicrobial efficacy was greater in the presence of an acquired pellicle which is postulated to be due to retention of soluble CHX by the pellicle.


Asunto(s)
Clorhexidina/química , Materiales Biocompatibles Revestidos/química , Implantes Dentales , Nanopartículas/química , Antiinfecciosos/administración & dosificación , Antiinfecciosos/química , Adhesión Bacteriana/efectos de los fármacos , Carga Bacteriana , Clorhexidina/administración & dosificación , Implantes Dentales/efectos adversos , Implantes Dentales/microbiología , Humanos , Técnicas In Vitro , Ensayo de Materiales , Nanopartículas/administración & dosificación , Fosfatos/administración & dosificación , Fosfatos/química , Streptococcus gordonii/efectos de los fármacos , Streptococcus gordonii/fisiología , Propiedades de Superficie , Titanio/efectos adversos , Titanio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...