Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Methods Enzymol ; 634: 153-175, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32093831

RESUMEN

Dynamic nuclear polarization (DNP) can provide a powerful means to amplify neutron diffraction from biological crystals by 10-100-fold, while simultaneously enhancing the visibility of hydrogen by an order of magnitude. Polarizing the neutron beam and aligning the proton spins in a polarized sample modulates the coherent and incoherent neutron scattering cross-sections of hydrogen, in ideal cases amplifying the coherent scattering by almost an order of magnitude and suppressing the incoherent background to zero. This chapter describes current efforts to develop and apply DNP techniques for spin polarized neutron protein crystallography, highlighting concepts, experimental design, labeling strategies and recent results, as well as considering new strategies for data collection and analysis that these techniques could enable.


Asunto(s)
Hidrógeno , Difracción de Neutrones , Cristalografía , Neutrones , Protones
2.
Front Microbiol ; 9: 871, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29765371

RESUMEN

The microfluidic mother machine platform has attracted much interest for its potential in studies of bacterial physiology, cellular organization, and cell mechanics. Despite numerous experiments and development of dedicated analysis software, differences in bacterial growth and morphology in narrow mother machine channels compared to typical liquid media conditions have not been systematically characterized. Here we determine changes in E. coli growth rates and cell dimensions in different sized dead-end microfluidic channels using high resolution optical microscopy. We find that E. coli adapt to the confined channel environment by becoming narrower and longer compared to the same strain grown in liquid culture. Cell dimensions decrease as the channel length increases and width decreases. These changes are accompanied by increases in doubling times in agreement with the universal growth law. In channels 100 µm and longer, cell doublings can completely stop as a result of frictional forces that oppose cell elongation. Before complete cessation of elongation, mechanical stresses lead to substantial deformation of cells and changes in their morphology. Our work shows that mechanical forces rather than nutrient limitation are the main growth limiting factor for bacterial growth in long and narrow channels.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...