Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
2.
Biochem J ; 477(22): 4349-4365, 2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-33094801

RESUMEN

The membrane-associated prostasin and matriptase belonging to the S1A subfamily of serine proteases, are critical for epithelial development and maintenance. The two proteases are involved in the activation of each other and are both regulated by the protease inhibitors, HAI-1 and HAI-2. The S1A subfamily of serine proteases are generally produced as inactive zymogens requiring a cleavage event to obtain activity. However, contrary to the common case, the zymogen form of matriptase exhibits proteolytic activity, which can be inhibited by HAI-1 and HAI-2, as for the activated counterpart. We provide strong evidence that also prostasin exhibits proteolytic activity in its zymogen form. Furthermore, we show that the activity of zymogen prostasin can be inhibited by HAI-1 and HAI-2. We report that zymogen prostasin is capable of activating zymogen matriptase, but unable to activate its own zymogen form. We propose the existence of an unusual enzyme-enzyme relationship consisting of proteolytically active zymogen forms of both matriptase and prostasin, kept under control by HAI-1 and HAI-2, and located at the pinnacle of an important proteolytic pathway in epithelia. Perturbed balance in this proteolytic system is likely to cause rapid and efficient activation of matriptase by the dual action of zymogen matriptase and zymogen prostasin. Previous studies suggest that the zymogen form of matriptase performs the normal proteolytic functions of the protease, whereas excess matriptase activation likely causes carcinogenesis. HAI-1 and HAI-2 are thus important for the prevention of matriptase activation whether catalysed by zymogen/activated prostasin (this study) or zymogen/activated matriptase (previous studies).


Asunto(s)
Precursores Enzimáticos/metabolismo , Proteolisis , Serina Endopeptidasas/metabolismo , Precursores Enzimáticos/genética , Células HEK293 , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas Inhibidoras de Proteinasas Secretoras/genética , Proteínas Inhibidoras de Proteinasas Secretoras/metabolismo , Serina Endopeptidasas/genética
3.
Accid Anal Prev ; 144: 105614, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32563730

RESUMEN

This study estimates the effects of lane and shoulder widths on occurrence of head-on and single-vehicle accidents on rural two-lane undivided roads in Norway while considering the differences between winter and non-winter accidents and their severity levels. A matched case-control method was applied to calculate the odds ratios for lane and shoulder width categories, while controlling for the effects of AADT and adjusting for the effects of region, speed limit, segment length, share of long vehicles in AADT and horizontal alignment. The study used a sample of 71,999 roadway segments identified in GIS and 1886 related accidents recorded by the police in five-year period. The results suggest that it is relevant to consider winter and non-winter accidents as well as severe and slight accidents separately when studying the effects of lane and shoulder widths on the occurrence of head-on and single-vehicle accidents. When examining lane and shoulder widths for all related accidents, the lane widths 1.50-2.50 m and shoulder widths 0.50-0.75 m were relatively safer than other categories on Norwegian two-lane rural undivided roads.


Asunto(s)
Accidentes de Tránsito/estadística & datos numéricos , Entorno Construido/estadística & datos numéricos , Estudios de Casos y Controles , Humanos , Noruega , Población Rural , Estaciones del Año
4.
Biochem J ; 477(9): 1779-1794, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32338287

RESUMEN

The membrane-bound serine protease matriptase belongs to a rare subset of serine proteases that display significant activity in the zymogen form. Matriptase is critically involved in epithelial differentiation and homeostasis, and insufficient regulation of its proteolytic activity directly causes onset and development of malignant cancer. There is strong evidence that the zymogen activity of matriptase is sufficient for its biological function(s). Activated matriptase is inhibited by the two Kunitz-type inhibitor domain-containing hepatocyte growth factor activator inhibitors 1 (HAI-1) and HAI-2, however, it remains unknown whether the activity of the matriptase zymogen is regulated. Using both purified proteins and a cell-based assay, we show that the catalytic activity of the matriptase zymogen towards a peptide-based substrate as well as the natural protein substrates, pro-HGF and pro-prostasin, can be inhibited by HAI-1 and HAI-2. Inhibition of zymogen matriptase by HAI-1 and HAI-2 appears similar to inhibition of activated matriptase and occurs at comparable inhibitor concentrations. This indicates that HAI-1 and HAI-2 interact with the active sites of zymogen and activated matriptase in a similar manner. Our results suggest that HAI-1 and HAI-2 regulate matriptase zymogen activity and thus may act as regulators of matriptase trans(auto)-activation. Due to the main localisation of HAI-2 in the ER and HAI-1 in the secretory pathway and on the cell surface, this regulation likely occurs both in the secretory pathway and on the plasma membrane. Regulation of an active zymogen form of a protease is a novel finding.


Asunto(s)
Proteínas Inhibidoras de Proteinasas Secretoras/metabolismo , Serina Endopeptidasas/metabolismo , Membrana Celular/metabolismo , Células HEK293 , Humanos , Glicoproteínas de Membrana/metabolismo , Vías Secretoras
5.
J Biol Chem ; 294(10): 3794-3805, 2019 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-30651349

RESUMEN

Protein sequences of members of the plasminogen activation system are present throughout the entire vertebrate phylum. This important and well-described proteolytic cascade is governed by numerous protease-substrate and protease-inhibitor interactions whose conservation is crucial to maintaining unchanged protein function throughout evolution. The pressure to preserve protein-protein interactions may lead to either co-conservation or covariation of binding interfaces. Here, we combined covariation analysis and structure-based prediction to analyze the binding interfaces of urokinase (uPA):plasminogen activator inhibitor-1 (PAI-1) and uPA:plasminogen complexes. We detected correlated variation between the S3-pocket-lining residues of uPA and the P3 residue of both PAI-1 and plasminogen. These residues are known to form numerous polar interactions in the human uPA:PAI-1 Michaelis complex. To test the effect of mutations that correlate with each other and have occurred during mammalian diversification on protein-protein interactions, we produced uPA, PAI-1, and plasminogen from human and zebrafish to represent mammalian and nonmammalian orthologs. Using single amino acid point substitutions in these proteins, we found that the binding interfaces of uPA:plasminogen and uPA:PAI-1 may have coevolved to maintain tight interactions. Moreover, we conclude that although the interaction areas between protease-substrate and protease-inhibitor are shared, the two interactions are mechanistically different. Compared with a protease cleaving its natural substrate, the interaction between a protease and its inhibitor is more complex and involves a more fine-tuned mechanism. Understanding the effects of evolution on specific protein interactions may help further pharmacological interventions of the plasminogen activation system and other proteolytic systems.


Asunto(s)
Evolución Molecular , Inhibidor 1 de Activador Plasminogénico/metabolismo , Activadores Plasminogénicos/metabolismo , Secuencia de Aminoácidos , Animales , Humanos , Modelos Moleculares , Activadores Plasminogénicos/antagonistas & inhibidores , Activadores Plasminogénicos/química , Unión Proteica , Conformación Proteica , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo
6.
BMC Evol Biol ; 19(1): 27, 2019 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-30654737

RESUMEN

BACKGROUND: The plasminogen (PLG) activation system is composed by a series of serine proteases, inhibitors and several binding proteins, which together control the temporal and spatial generation of the active serine protease plasmin. As this proteolytic system plays a central role in human physiology and pathophysiology it has been extensively studied in mammals. The serine proteases of this system are believed to originate from an ancestral gene by gene duplications followed by domain gains and deletions. However, the identification of ancestral forms in primitive chordates supporting these theories remains elusive. In addition, evolutionary studies of the non-proteolytic members of this system are scarce. RESULTS: Our phylogenetic analyses place lamprey PLG at the root of the vertebrate PLG-group, while lamprey PLG-related growth factors represent the ancestral forms of the jawed-vertebrate orthologues. Furthermore, we find that the earliest putative orthologue of the PLG activator group is the hyaluronan binding protein 2 (HABP2) gene found in lampreys. The prime plasminogen activators (tissue- and urokinase-type plasminogen activator, tPA and uPA) first occur in cartilaginous fish and phylogenetic analyses confirm that all orthologues identified compose monophyletic groups to their mammalian counterparts. Cartilaginous fishes exhibit the most ancient vitronectin of all vertebrates, while plasminogen activator inhibitor 1 (PAI-1) appears for the first time in cartilaginous fishes and is conserved in the rest of jawed vertebrate clades. PAI-2 appears for the first time in the common ancestor of reptiles and mammals, and represents the latest appearing plasminogen activator inhibitor. Finally, we noted that the urokinase-type plasminogen activator receptor (uPAR)-and three-LU domain containing genes in general-occurred later in evolution and was first detectable after coelacanths. CONCLUSIONS: This study identifies several primitive orthologues of the mammalian plasminogen activation system. These ancestral forms provide clues to the origin and diversification of this enzyme system. Further, the discovery of several members-hitherto unknown in mammals-provide new perspectives on the evolution of this important enzyme system.


Asunto(s)
Cordados/genética , Variación Genética , Filogenia , Plasminógeno/genética , Secuencia de Aminoácidos , Animales , Bases de Datos de Proteínas , Humanos , Funciones de Verosimilitud , Inhibidor 1 de Activador Plasminogénico/química , Dominios Proteicos , Análisis de Secuencia de ARN , Transcriptoma/genética , Activador de Plasminógeno de Tipo Uroquinasa/química , Vitronectina/química
7.
Hum Mol Genet ; 28(5): 828-841, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30445423

RESUMEN

The syndromic form of congenital sodium diarrhea (SCSD) is caused by bi-allelic mutations in SPINT2, which encodes a Kunitz-type serine protease inhibitor (HAI-2). We report three novel SCSD patients, two novel SPINT2 mutations and review published cases. The most common findings in SCSD patients were choanal atresia (20/34) and keratitis of infantile onset (26/34). Characteristic epithelial tufts on intestinal histology were reported in 13/34 patients. Of 13 different SPINT2 variants identified in SCSD, 4 are missense variants and localize to the second Kunitz domain (KD2) of HAI-2. HAI-2 has been implicated in the regulation of the activities of several serine proteases including prostasin and matriptase, which are both important for epithelial barrier formation. No patient with bi-allelic stop mutations was identified, suggesting that at least one SPINT2 allele encoding a protein with residual HAI-2 function is necessary for survival. We show that the SCSD-associated HAI-2 variants p.Phe161Val, p.Tyr163Cys and p.Gly168Ser all display decreased ability to inhibit prostasin-catalyzed cleavage. However, the SCSD-associated HAI-2 variants inhibited matriptase as efficiently as the wild-type HAI-2. Homology modeling indicated limited solvent exposure of the mutated amino acids, suggesting that they induce misfolding of KD2. This suggests that prostasin needs to engage with an exosite motif located on KD2 in addition to the binding loop (Cys47/Arg48) located on the first Kunitz domain in order to inhibit prostasin. In conclusion our data suggests that SCSD is caused by lack of inhibition of prostasin or a similar protease in the secretory pathway or on the plasma membrane.


Asunto(s)
Anomalías Múltiples/genética , Anomalías Múltiples/metabolismo , Diarrea/congénito , Regulación de la Expresión Génica , Glicoproteínas de Membrana/genética , Errores Innatos del Metabolismo/genética , Errores Innatos del Metabolismo/metabolismo , Mutación Missense , Serina Endopeptidasas/metabolismo , Adolescente , Secuencia de Aminoácidos , Niño , Preescolar , Diarrea/genética , Diarrea/metabolismo , Susceptibilidad a Enfermedades , Femenino , Estudios de Asociación Genética , Humanos , Lactante , Masculino , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Modelos Biológicos , Modelos Moleculares , Fenotipo , Relación Estructura-Actividad
8.
J Biol Chem ; 294(1): 314-326, 2019 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-30409910

RESUMEN

Matriptase is a member of the type-II transmembrane serine protease (TTSP) family and plays a crucial role in the development and maintenance of epithelial tissues. As all chymotrypsin-like serine proteases, matriptase is synthesized as a zymogen (proform), requiring a cleavage event for full activity. Recent studies suggest that the zymogen of matriptase possesses enough catalytic activity to not only facilitate autoactivation, but also carry out its in vivo functions, which include activating several proteolytic and signaling cascades. Inhibition of zymogen matriptase may therefore be a highly effective approach for limiting matriptase activity. To this end, here we sought to characterize the catalytic activity of human zymogen matriptase and to develop mAb inhibitors against this enzyme form. Using a mutated variant of matriptase in which the serine protease domain is locked in the zymogen conformation, we confirmed that the zymogen form of human matriptase has catalytic activity. Moreover, the crystal structure of the catalytic domain of zymogen matriptase was solved to 2.5 Å resolution to characterize specific antibody-based matriptase inhibitors and to further structure-based studies. Finally, we describe the first antibody-based competitive inhibitors that target both the zymogen and activated forms of matriptase. We propose that these antibodies provide a more efficient way to regulate matriptase activity by targeting the protease both before and after its activation and may be of value for both research and preclinical applications.


Asunto(s)
Anticuerpos Monoclonales/química , Precursores Enzimáticos/química , Inhibidores de Proteasas/química , Proteolisis , Serina Endopeptidasas/química , Cristalografía por Rayos X , Precursores Enzimáticos/antagonistas & inhibidores , Células HEK293 , Humanos , Dominios Proteicos
9.
Biochim Biophys Acta Gen Subj ; 1862(9): 2017-2023, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29959058

RESUMEN

Some peptide sequences can behave as either substrates or inhibitors of serine proteases. Working with a cyclic peptidic inhibitor of the serine protease urokinase-type plasminogen activator (uPA), we have now demonstrated a new mechanism for an inhibitor-to-substrate switch. The peptide, CSWRGLENHAAC (upain-2), is a competitive inhibitor of human uPA, but is also slowly converted to a substrate in which the bond between Arg4 and Gly5 (the P1-P1' bond) is cleaved. Substituting the P2 residue Trp3 to an Ala or substituting the P1 Arg4 residue with 4-guanidino-phenylalanine strongly increased the substrate cleavage rate. We studied the structural basis for the inhibitor-to-substrate switch by determining the crystal structures of the various peptide variants in complex with the catalytic domain of uPA. While the slowly cleaved peptides bound clearly in inhibitory mode, with the oxyanion hole blocked by the side chain of the P3' residue Glu7, peptides behaving essentially as substrates with a much accelerated rate of cleavage was observed to be bound to the enzyme in substrate mode. Our analysis reveals that the inhibitor-to-substrate switch was associated with a 7 Štranslocation of the P2 residue, and we conclude that the inhibitor-to-substrate switch of upain-2 is a result of a major conformational change in the enzyme-bound state of the peptide. This conclusion is in contrast to findings with so-called standard mechanism inhibitors in which the inhibitor-to-substrate switch is linked to minor conformational changes in the backbone of the inhibitory peptide stretch.


Asunto(s)
Péptidos Cíclicos/química , Péptidos Cíclicos/metabolismo , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Activador de Plasminógeno de Tipo Uroquinasa/antagonistas & inhibidores , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo , Sitios de Unión , Dominio Catalítico , Cristalización , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Especificidad por Sustrato
10.
J Biol Chem ; 293(17): 6269-6281, 2018 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-29497000

RESUMEN

The complement system is a complex, carefully regulated proteolytic cascade for which suppression of aberrant activation is of increasing clinical relevance, and inhibition of the complement alternative pathway is a subject of intense research. Here, we describe the nanobody hC3Nb1 that binds to multiple functional states of C3 with subnanomolar affinity. The nanobody causes a complete shutdown of alternative pathway activity in human and murine serum when present in concentrations comparable with that of C3, and hC3Nb1 is shown to prevent proconvertase assembly, as well as binding of the C3 substrate to C3 convertases. Our crystal structure of the C3b-hC3Nb1 complex and functional experiments demonstrate that proconvertase formation is blocked by steric hindrance between the nanobody and an Asn-linked glycan on complement factor B. In addition, hC3Nb1 is shown to prevent factor H binding to C3b, rationalizing its inhibition of factor I activity. Our results identify hC3Nb1 as a versatile, inexpensive, and powerful inhibitor of the alternative pathway in both human and murine in vitro model systems of complement activation.


Asunto(s)
Complejo Antígeno-Anticuerpo/química , Complemento C3/química , Vía Alternativa del Complemento , Anticuerpos de Dominio Único/química , Animales , Complejo Antígeno-Anticuerpo/inmunología , Camélidos del Nuevo Mundo , Complemento C3/inmunología , Cristalografía por Rayos X , Humanos , Ratones , Estructura Cuaternaria de Proteína , Anticuerpos de Dominio Único/inmunología
11.
Thromb Haemost ; 117(9): 1688-1699, 2017 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-28771275

RESUMEN

Plasminogen activator inhibitor type 1 (PAI-1) is a central regulator of fibrinolysis and tissue remodelling. PAI-1 belongs to the serpin superfamily and unlike other inhibitory serpins undergoes a spontaneous inactivation process under physiological conditions, termed latency transition. During latency transition the solvent exposed reactive centre loop is inserted into the central ß-sheet A of the molecule, and is no longer accessible to reaction with the protease. More than three decades of research on mammalian PAI-1 has not been able to clarify the evolutionary advantage and physiological relevance of latency transition. In order to study the origin of PAI-1 latency transition, we produced PAI-1 from Spiny dogfish shark (Squalus acanthias) and African lungfish (Protopterus sp.), which represent central species in the evolution of vertebrates. Although human PAI-1 and the non-mammalian PAI-1 variants share only approximately 50 % sequence identity, our results showed that all tested PAI-1 variants undergo latency transition with a similar rate. Since the functional stability of PAI-1 can be greatly increased by substitution of few amino acid residues, we conclude that the ability to undergo latency transition must have been a specific selection criterion for the evolution of PAI-1. It appears that all PAI-1 molecules must harbour latency transition to fulfil their physiological function, stressing the importance to further pursue a complete understanding of this molecular phenomenon with possible implication to pharmacological intervention. Our results provide the next step in understanding how the complete role of this important protease inhibitor evolved along with the fibrinolytic system.


Asunto(s)
Evolución Molecular , Péptido Hidrolasas/metabolismo , Inhibidor 1 de Activador Plasminogénico/metabolismo , Squalus acanthias/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Glicosilación , Cinética , Modelos Moleculares , Péptido Hidrolasas/química , Filogenia , Inhibidor 1 de Activador Plasminogénico/química , Inhibidor 1 de Activador Plasminogénico/genética , Conformación Proteica en Lámina beta , Pliegue de Proteína , Estabilidad Proteica , Proteolisis , Proteínas Recombinantes/metabolismo , Solventes/química , Especificidad de la Especie , Squalus acanthias/genética , Relación Estructura-Actividad
12.
PLoS One ; 12(8): e0182756, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28832628

RESUMEN

The spiny dogfish shark (Squalus acanthias) is one of the most commonly used cartilaginous fishes in biological research, especially in the fields of nitrogen metabolism, ion transporters and osmoregulation. Nonetheless, transcriptomic data for this organism is scarce. In the present study, a multi-tissue RNA-seq experiment and de novo transcriptome assembly was performed in four different spiny dogfish tissues (brain, liver, kidney and ovary), providing an annotated sequence resource. The characterization of the transcriptome greatly increases the scarce sequence information for shark species. Reads were assembled with the Trinity de novo assembler both within each tissue and across all tissues combined resulting in 362,690 transcripts in the combined assembly which represent 289,515 Trinity genes. BUSCO analysis determined a level of 87% completeness for the combined transcriptome. In total, 123,110 proteins were predicted of which 78,679 and 83,164 had significant hits against the SwissProt and Uniref90 protein databases, respectively. Additionally, 61,215 proteins aligned to known protein domains, 7,208 carried a signal peptide and 15,971 possessed at least one transmembrane region. Based on the annotation, 81,582 transcripts were assigned to gene ontology terms and 42,078 belong to known clusters of orthologous groups (eggNOG). To demonstrate the value of our molecular resource, we show that the improved transcriptome data enhances the current possibilities of osmoregulation research in spiny dogfish by utilizing the novel gene and protein annotations to investigate a set of genes involved in urea synthesis and urea, ammonia and water transport, all of them crucial in osmoregulation. We describe the presence of different gene copies and isoforms of key enzymes involved in this process, including arginases and transporters of urea and ammonia, for which sequence information is currently absent in the databases for this model species. The transcriptome assemblies and the derived annotations generated in this study will support the ongoing research for this particular animal model and provides a new molecular tool to assist biological research in cartilaginous fishes.


Asunto(s)
Osmorregulación , Análisis de Secuencia de ARN , Squalus acanthias/genética , Transcriptoma , Animales
13.
Sci Rep ; 7(1): 3385, 2017 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-28611361

RESUMEN

Although trypsin-like serine proteases have flexible surface-exposed loops and are known to adopt higher and lower activity conformations, structural determinants for the different conformations have remained largely obscure. The trypsin-like serine protease, urokinase-type plasminogen activator (uPA), is central in tissue remodeling processes and also strongly implicated in tumor metastasis. We solved five X-ray crystal structures of murine uPA (muPA) in the absence and presence of allosteric molecules and/or substrate-like molecules. The structure of unbound muPA revealed an unsuspected non-chymotrypsin-like protease conformation in which two ß-strands in the core of the protease domain undergoes a major antiparallel-to-parallel conformational transition. We next isolated two anti-muPA nanobodies; an active-site binding nanobody and an allosteric nanobody. Crystal structures of the muPA:nanobody complexes and hydrogen-deuterium exchange mass spectrometry revealed molecular insights about molecular factors controlling the antiparallel-to-parallel equilibrium in muPA. Together with muPA activity assays, the data provide valuable insights into regulatory mechanisms and conformational flexibility of uPA and trypsin-like serine proteases in general.


Asunto(s)
Conformación Proteica , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/metabolismo , Activador de Plasminógeno de Tipo Uroquinasa/química , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo , Animales , Especificidad de Anticuerpos , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Ratones , Modelos Moleculares
15.
J Biol Chem ; 292(20): 8412-8423, 2017 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-28348076

RESUMEN

Hepatocyte growth factor activator inhibitor 1 (HAI-1) is a membrane-bound multidomain protein essential to the integrity of the basement membrane during placental development and is also important in maintaining postnatal homeostasis in many tissues. HAI-1 is a Kunitz-type serine protease inhibitor, and soluble fragments of HAI-1 with variable lengths have been identified in vivo The full-length extracellular portion of HAI-1 (sHAI-1) shows weaker inhibitory activity toward target proteases than the smaller fragments, suggesting auto-inhibition of HAI-1. However, this possible regulatory mechanism has not yet been evaluated. Here, we solved the crystal structure of sHAI-1 and determined the solution structure by small-angle X-ray scattering. These structural analyses revealed that, despite the presence of long linkers, sHAI-1 exists in a compact conformation in which sHAI-1 active sites in Kunitz domain 1 are sterically blocked by neighboring structural elements. We also found that in the presence of target proteases, sHAI-1 adopts an extended conformation that disables the auto-inhibition effect. Our results also reveal the roles of non-inhibitory domains of this multidomain protein and explain the low activity of the full-length protein. The structural insights gained here improve our understanding of the regulation of HAI-1 inhibitory activities and point to new approaches for better controlling these activities.


Asunto(s)
Proteínas Inhibidoras de Proteinasas Secretoras/química , Cristalografía por Rayos X , Humanos , Dominios Proteicos , Proteínas Inhibidoras de Proteinasas Secretoras/genética , Proteínas Inhibidoras de Proteinasas Secretoras/metabolismo , Relación Estructura-Actividad
16.
Cell Chem Biol ; 23(6): 700-8, 2016 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-27265748

RESUMEN

Most serpins are fast and specific inhibitors of extracellular serine proteases controlling biological processes such as blood coagulation, fibrinolysis, tissue remodeling, and inflammation. The inhibitory activity of serpins is based on a conserved metastable structure and their conversion to a more stable state during reaction with the target protease. However, the metastable state also makes serpins vulnerable to mutations, resulting in disease caused by inactive and misfolded monomeric or polymeric forms ("serpinopathy"). Misfolding can occur either intracellularly (type-I serpinopathies) or extracellularly (type-II serpinopathies). We have isolated a 2'-fluoropyrimidine-modified RNA aptamer, which inhibits a mutation-induced inactivating misfolding of the serpin α1-antichymotrypsin. It is the first agent able to stabilize a type-II mutation of a serpin without interfering with the inhibitory mechanism, thereby presenting a solution for the long-standing challenge of preventing pathogenic misfolding without compromising the inhibitory function.


Asunto(s)
Aptámeros de Nucleótidos/farmacología , Mutación , Pliegue de Proteína/efectos de los fármacos , Serpinas/genética , Serpinas/metabolismo , Aptámeros de Nucleótidos/química , Medición de Intercambio de Deuterio , Humanos , Espectrometría de Masas , Modelos Moleculares , Serpinas/química , Resonancia por Plasmón de Superficie
17.
J Biol Chem ; 291(32): 16494-507, 2016 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-27252379

RESUMEN

The lectin (LP) and classical (CP) pathways are two of the three main activation cascades of the complement system. These pathways start with recognition of different pathogen- or danger-associated molecular patterns and include identical steps of proteolytic activation of complement component C4, formation of the C3 proconvertase C4b2, followed by cleavage of complement component C2 within C4b2 resulting in the C3 convertase C4b2a. Here, we describe the solution structures of the two central complexes of the pathways, C3 proconvertase and C3 convertase, as well as the unbound zymogen C2 obtained by small angle x-ray scattering analysis. We analyzed both native and enzymatically deglycosylated C4b2 and C2 and showed that the resulting structural models were independent of the glycans. The small angle x-ray scattering-derived models suggest a different activation mode for the CP/LP C3 proconvertase as compared with that established for the alternative pathway proconvertase C3bB. This is likely due to the rather different structural and functional properties of the proteases activating the proconvertases. The solution structure of a stabilized form of the active CP/LP C3 convertase C4b2a is strikingly similar to the crystal structure of the alternative pathway C3 convertase C3bBb, which is in accordance with their identical functions in cleaving the complement proteins C3 and C5.


Asunto(s)
Complemento C2/química , Convertasas de Complemento C3-C5/química , Complemento C4/química , Humanos , Difracción de Rayos X
18.
J Biol Chem ; 291(27): 14340-14355, 2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-27189939

RESUMEN

Hepatocyte growth factor activator inhibitor-1 (HAI-1) is a type I transmembrane protein and inhibitor of several serine proteases, including hepatocyte growth factor activator and matriptase. The protein is essential for development as knock-out mice die in utero due to placental defects caused by misregulated extracellular proteolysis. HAI-1 contains two Kunitz-type inhibitor domains (Kunitz), which are generally thought of as a functionally self-contained protease inhibitor unit. This is not the case for HAI-1, where our results reveal how interdomain interactions have evolved to stimulate the inhibitory activity of an integrated Kunitz. Here we present an x-ray crystal structure of an HAI-1 fragment covering the internal domain and Kunitz-1. The structure reveals not only that the previously uncharacterized internal domain is a member of the polycystic kidney disease domain family but also how the two domains engage in interdomain interactions. Supported by solution small angle x-ray scattering and a combination of site-directed mutagenesis and functional assays, we show that interdomain interactions not only stabilize the fold of the internal domain but also stimulate the inhibitory activity of Kunitz-1. By completing our structural characterization of the previously unknown N-terminal region of HAI-1, we provide new insight into the interplay between tertiary structure and the inhibitory activity of a multidomain protease inhibitor. We propose a previously unseen mechanism by which the association of an auxiliary domain stimulates the inhibitory activity of a Kunitz-type inhibitor (i.e. the first structure of an intramolecular interaction between a Kunitz and another domain).


Asunto(s)
Glicoproteínas de Membrana/metabolismo , Enfermedades Renales Poliquísticas/metabolismo , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Glicoproteínas de Membrana/química , Ratones , Ratones Noqueados , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Proteínas Inhibidoras de Proteinasas Secretoras , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Dispersión del Ángulo Pequeño , Homología de Secuencia de Aminoácido , Resonancia por Plasmón de Superficie
19.
Bioconjug Chem ; 27(4): 918-26, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-26926041

RESUMEN

In drug development, molecular intervention strategies are usually based on interference with a single protein function, such as enzyme activity or receptor binding. However, in many cases, protein drug targets are multifunctional, with several molecular functions contributing to their pathophysiological actions. Aptamers and peptides are interesting synthetic building blocks for the design of multivalent molecules capable of modulating multiple functions of a target protein. Here, we report a molecular trap with the ability to interfere with the activation, catalytic activity, receptor binding, etc. of the serine protease urokinase-type plasminogen activator (uPA) by a rational combination of two RNA aptamers and a peptide with different inhibitory properties. The assembly of these artificial inhibitors into one molecule enhanced the inhibitory activity between 10- and 10,000-fold toward several functions of uPA. The study highlights the potential of multivalent designs and illustrates how they can easily be constructed from aptamers and peptides using nucleic acid engineering, chemical synthesis, and bioconjugation chemistry. By aptamer to aptamer and aptamer to peptide conjugation, we created, to the best of our knowledge, the first trivalent molecule which combines three artificial inhibitors binding to three different sites in a protein target. We hypothesize that by simultaneously preventing all of the functional interactions and activities of the target protein, this approach may represent an alternative to siRNA technology for a functional knockout.


Asunto(s)
Aptámeros de Nucleótidos/química , Péptidos/química , Serina Proteasas/química , Secuencia de Aminoácidos
20.
Nucleic Acids Res ; 43(21): e139, 2015 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-26163061

RESUMEN

Nucleic acid aptamer selection by systematic evolution of ligands by exponential enrichment (SELEX) has shown great promise for use in the development of research tools, therapeutics and diagnostics. Typically, aptamers are identified from libraries containing up to 10(16) different RNA or DNA sequences by 5-10 rounds of affinity selection towards a target of interest. Such library screenings can result in complex pools of many target-binding aptamers. New high-throughput sequencing techniques may potentially revolutionise aptamer selection by allowing quantitative assessment of the dynamic changes in the pool composition during the SELEX process and by facilitating large-scale post-SELEX characterisation. In the present study, we demonstrate how high-throughput sequencing of SELEX pools, before and after a single round of branched selection for binding to different target variants, can provide detailed information about aptamer binding sites, preferences for specific target conformations, and functional effects of the aptamers. The procedure was applied on a diverse pool of 2'-fluoropyrimidine-modified RNA enriched for aptamers specific for the serpin plasminogen activator inhibitor-1 (PAI-1) through five rounds of standard selection. The results demonstrate that it is possible to perform large-scale detailed characterisation of aptamer sequences directly in the complex pools obtained from library selection methods, thus without the need to produce individual aptamers.


Asunto(s)
Aptámeros de Nucleótidos/química , Secuenciación de Nucleótidos de Alto Rendimiento , Técnica SELEX de Producción de Aptámeros , Sitios de Unión , Ligandos , Mutación , Conformación de Ácido Nucleico , Inhibidor 1 de Activador Plasminogénico/genética , Inhibidor 1 de Activador Plasminogénico/metabolismo , ARN/química , Alineación de Secuencia , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...