Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 733: 150721, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39307113

RESUMEN

Lactate dehydrogenase A (LDHA) is a key enzyme in Warburg's effect, a characteristic of cancer cells. LDHA is a target of anticancer agents that inhibit the metabolism of cancer cells. Gossypol is a known cancer therapeutic agent that inhibits LDHA by competitive inhibition. However, the mechanisms of inhibition of LDHA by gossypol is unknown. Here, we elucidate the binding of gossypol and LDHA using biochemical and biophysical methods. The crystal structure of the complex between LDHA and gossypol is presented. The binding of gossypol affects LDHA activity by a conformational change in the active-site loop. Our research contributes to the structural insight into LDHA with gossypol and approaches gossypol as a novel therapeutic candidate targeting the metabolic pathways for cancer cells.

2.
Biochem Biophys Res Commun ; 726: 150306, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-38917634

RESUMEN

The folate metabolism enzyme ALDH1L1 catalyzed 10-formyltetrahydrofolate to tetrahydrofolate and CO2. Non-small cell lung cancer cells (NSCLC) strongly express ALDH1L1. Gossypol binds to an allosteric site and disrupts the folate metabolism by preventing NADP+ binding. The Cryo-EM structures of tetrameric C-terminal aldehyde dehydrogenase human ALDH1L1 complex with gossypol were examined. Gossypol-bound ALDH1L1 interfered with NADP+ by shifting the allosteric site of the structural conformation, producing a closed-form NADP+ binding site. In addition, the inhibition activity of ALDH1L1 was targeted with gossypol in NSCLC. The gossypol treatment had anti-cancer effects on NSCLC by blocking NADPH and ATP production. These findings emphasize the structure characterizing ALDH1L1 with gossypol.


Asunto(s)
Gosipol , Humanos , Gosipol/química , Gosipol/farmacología , Gosipol/metabolismo , NADP/metabolismo , NADP/química , Modelos Moleculares , Microscopía por Crioelectrón , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Aldehído Oxidorreductasas/metabolismo , Aldehído Oxidorreductasas/química , Unión Proteica , Sitios de Unión , Sitio Alostérico , Conformación Proteica , Línea Celular Tumoral , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH
3.
Int J Biol Macromol ; 275(Pt 2): 133314, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38944084

RESUMEN

The tumor suppressor p53 plays important roles in suppressing the development and progression of cancer by responding to various stress signals. In addition, p53 can regulate the metabolic pathways of cancer cells by regulating energy metabolism and oxidative phosphorylation. Here, we present a mechanism for the interaction between p53 and ZNF568. Initially, we used X-ray crystallography to determine the irregular loop structure of the ZNF568 KRAB domain; this loop plays an important role in the interaction between p53 and ZNF568. In addition, Cryo-EM was used to examine how the p53 DBD and ZNF568 KRAB domains bind together. The function of ZNF568 on p53-mediated mitochondrial respiration was confirmed by measuring glucose consumption and lactate production. These findings show that ZNF568 can reduce p53-mediated mitochondrial respiratory activity by binding to p53 and inhibiting the transcription of SCO2. SIGNIFICANCE: ZNF568 can directly bind to the p53 DBD and transcriptionally regulate the SCO2 gene. SCO2 transcriptional regulation by interaction between ZNF568 and p53 may regulate the balance between mitochondrial respiration and glycolysis.


Asunto(s)
Mitocondrias , Fosforilación Oxidativa , Unión Proteica , Proteína p53 Supresora de Tumor , Humanos , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/química , Cristalografía por Rayos X , Glucólisis , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/química , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética
4.
BMB Rep ; 57(7): 318-323, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38835119

RESUMEN

Regulation of cell fate and lung cell differentiation is associated with Aminoacyl-tRNA synthetases (ARS)-interacting multifunctional protein 2 (AIMP2), which acts as a non-enzymatic component required for the multi-tRNA synthetase complex. In response to DNA damage, a component of AIMP2 separates from the multi-tRNA synthetase complex, binds to p53, and prevents its degradation by MDM2, inducing apoptosis. Additionally, AIMP2 reduces proliferation in TGF-ß and Wnt pathways, while enhancing apoptotic signaling induced by tumor necrosis factor-ß. Given the crucial role of these pathways in tumorigenesis, AIMP2 is expected to function as a broad-spectrum tumor suppressor. The full-length AIMP2 transcript consists of four exons, with a small section of the pre-mRNA undergoing alternative splicing to produce a variant (AIMP2-DX2) lacking the second exon. AIMP2-DX2 binds to FBP, TRAF2, and p53 similarly to AIMP2, but competes with AIMP2 for binding to these target proteins, thereby impairing its tumor-suppressive activity. AIMP2-DX2 is specifically expressed in a diverse range of cancer cells, including breast cancer, liver cancer, bone cancer, and stomach cancer. There is growing interest in AIMP2-DX2 as a promising biomarker for prognosis and diagnosis, with AIMP2-DX2 inhibition attracting significant interest as a potentially effective therapeutic approach for the treatment of lung, ovarian, prostate, and nasopharyngeal cancers. [BMB Reports 2024; 57(7): 318-323].


Asunto(s)
Neoplasias , Humanos , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patología , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas Nucleares
5.
Biochem Biophys Res Commun ; 706: 149728, 2024 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-38479246

RESUMEN

Influenza A virus is the cause of a widespread human disease with high morbidity and mortality rates. The influenza virus encodes non-structural protein 1 (NS1), an exceedingly multifunctional virulence component. NS1 plays essential roles in viral replication and evasion of the cellular innate immune system. Protein kinase RNA-activated also known as protein kinase R (PKR) phosphorylates translation initiation factor eIF-2α on serine 51 to inhibit protein synthesis in virus-infected mammalian cells. Consequently, PKR activation inhibits mRNA translation, which results in the assert of both viral protein synthesis and cellular and possibly apoptosis in response to virus infection. Host signaling pathways are important in the replication of influenza virus, but the mechanisms involved remain to be characterized. Herein, the structure of NS1 and PKR complex was determined using Cryo-EM. We found the N91, E94, and G95 residues of PKR bind directly with N188, D125, and K126, respectively, of NS1. Furthermore, the study shows that PKR peptide offers a potential treatment for Influenza A virus infections.


Asunto(s)
Virus de la Influenza A , eIF-2 Quinasa , Animales , Humanos , eIF-2 Quinasa/metabolismo , Proteínas no Estructurales Virales/química , Virus de la Influenza A/genética , Microscopía por Crioelectrón , Línea Celular , Antivirales/metabolismo , Replicación Viral , Mamíferos/metabolismo
6.
Biochem Biophys Res Commun ; 697: 149544, 2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38245927

RESUMEN

T-cell immunoglobulin and mucin protein 3 (Tim-3), also known as Hepatitis A virus cellular receptor 2, has been discovered to have a negative regulatory effect on murine T-cell responses. Galectin-9 exhibits various biological effects, including cell aggregation, eosinophil chemoattraction, activation, and apoptosis, observed in murine thymocytes, T-cells, and human melanoma cells. Such approach demonstrated that Galectin-9 acts as a binding partner on Tim-3 and mediates the T-cell inhibitory effects. Tl-gal is a homologous protein to galectin-9, isolated from the adult stage of the canine gastrointestinal nematode parasite Toxascaris leonina. However, molecular mechanism between Tim-3 and galectin-9 is still remain unknown. Here, we describe the cryo-electron microscopy and X-ray structures and interactions of the Tim-3 and Tl-gal complex as well as their biochemical and biophysical characterization. In the structure, Ser46 residue of Tl-gal NCRD was bound to Asp25 residue of hTim-3. Compared to our previous study, the binding site of the complex is the same as the sugar binding site (the Ser46 residue) of Tl-gal. In addition, analysis of the complex structure revealed that the four Tl-gal molecules were in an open form packing and one mTim-3 peptide was bound to one Tl-gal molecule. These observations suggest that how Tl-gal binds hTim3 is essential to understanding the molecular mechanism for the Tim-3-galectin 9 interaction that regulates immune responses. This could potentially serve as a therapeutic target for inflammatory diseases.


Asunto(s)
Receptor 2 Celular del Virus de la Hepatitis A , Toxascaris , Adulto , Ratones , Animales , Humanos , Perros , Toxascaris/química , Toxascaris/metabolismo , Microscopía por Crioelectrón , Galectinas/metabolismo , Inmunoglobulinas , Mucinas
7.
Biochem Biophys Res Commun ; 665: 1-9, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37146409

RESUMEN

E3L (RNA-binding protein E3) is one of the key IFN resistance genes encoded by VV and consists of 190 amino acids with a highly conserved carboxy-terminal double-stranded RNA-binding domain (dsRBD). PKR (dsRNA-dependent protein kinase) is an IFN-induced protein involved in anti-cell and antiviral activity. PKR inhibits the initiation of translation through alpha subunit of the initiation factor eIF2 (eIF2α) and mediates several transcription factors such as NF-κB, p53 or STATs. Activated PKR also induces apoptosis in vaccinia virus infection. E3L is required for viral IFN resistance and directly binds to PKR to block activation of PKR. In this work, we determined the three-dimensional complex structure of E3L and PKR using cryo-EM and determined the important residues involved in the interaction. In addition, PKR peptide binds to E3L and can increase protein levels of phosphorus-PKR and phosphorus-eIF2α-induced cell apoptosis through upregulation of phosphorus-PKR in HEK293 cells. Taken together, structural insights into E3L and PKR will provide a new optimization and development of vaccinia virus drugs.


Asunto(s)
Virus Vaccinia , Proteínas Virales , Humanos , eIF-2 Quinasa/metabolismo , Células HEK293 , Fosforilación , ARN Bicatenario , Virus Vaccinia/genética , Proteínas Virales/metabolismo
8.
Biochem Biophys Res Commun ; 641: 27-33, 2023 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-36516586

RESUMEN

KRAS mutations occur in a quarter of all human cancers. When activated in its GTP-bound form, RAS stimulates diverse cellular systems, such as cell division, differentiation, growth, and apoptosis through the activations of various signaling pathways, which include mitogen-activated protein kinase (MAPK), phosphoinositide 3 kinases (PI3K), and RAL-GEFs pathways. We found that GJ101 (65LYDVA69) binds directly to the KRAS mutant (G12V) and showed tumor-suppressive activity. In addition, the GJ101 peptide inhibited KRAS mutant as determined by a [α-32P] guanosine triphosphate (GTP) binding assay and suppressed pancreatic cell line in a cell proliferation assay. Herein, the complex structure of KRAS and GJ101 was clarified by X-ray crystallography. Isothermal titration calorimetry showed that GJ101 binds highly with KRAS mutant and the complex structure of KRAS G12V.GJ101 complex presented that the residue of Q61 directly interacted with L65 of GJ101. Overall, the results suggest GJ101 be considered a developmental starting point for KRAS G12V inhibitor.


Asunto(s)
Proteínas Proto-Oncogénicas p21(ras) , Transducción de Señal , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Línea Celular , Mutación , Guanosina Trifosfato/metabolismo , Línea Celular Tumoral
9.
J Microbiol Biotechnol ; 32(8): 1034-1040, 2022 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-35879276

RESUMEN

Fas-associated death domain (FADD) is an adapter molecule that bridges the interaction between receptor-interacting protein 1 (RIP1) and aspartate-specific cysteine protease-8 (caspase-8). As the primary mediator of apoptotic cell death, caspase-8 has two N-terminal death-effector domains (DEDs) and it interacts with other proteins in the DED subfamily through several conserved residues. In the tumor necrosis receptor-1 (TNFR-1)-dependent signaling pathway, apoptosis is triggered by the caspase-8/FADD complex by stimulating receptor internalization. However, the molecular mechanism of complex formation by the DED proteins remains poorly understood. Here, we found that direct DED-DED interaction between FADD and caspase-8 and the structure-based mutations (Y8D/I128A, E12A/I128A, E12R/I128A, K39A/I128A, K39D/I128A, F122A/I128A, and L123A/I128A) of caspase-8 disrupted formation of the stable DED complex with FADD. Moreover, the monomeric crystal structure of the caspase-8 DEDs (F122A/I128A) was solved at 1.7 Å. This study will provide new insight into the interaction mechanism and structural characteristics between FADD and caspase-8 DED subfamily proteins.


Asunto(s)
Apoptosis , Caspasa 8 , Caspasa 9 , Proteína de Dominio de Muerte Asociada a Fas
10.
Cancers (Basel) ; 13(22)2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34830757

RESUMEN

RAS proteins play a role in many physiological signals transduction processes, including cell growth, division, and survival. The Ras protein has amino acids 188-189 and functions as GTPase. These proteins are switch molecules that cycle between inactive GDP-bound and active GTP-bound by guanine nucleotide exchange factors (GEFs). KRAS is one of the Ras superfamily isoforms (N-RAS, H-RAS, and K-RAS) that frequently mutate in cancer. The mutation of KRAS is essentially performing the transformation in humans. Since most RAS proteins belong to GTPase, mutated and GTP-bound active RAS is found in many cancers. Despite KRAS being an important molecule in mostly human cancer, including pancreatic and breast, numerous efforts in years past have persisted in cancer therapy targeting KRAS mutant. This review summarizes the biological characteristics of these proteins and the recent progress in the exploration of KRAS-targeted anticancer, leading to new insight.

11.
Int J Mol Sci ; 22(13)2021 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-34199060

RESUMEN

Receptor for advanced glycation end-products (RAGE) is a member of the immunoglobulin superfamily. RAGE binds and mediates cellular responses to a range of DAMPs (damage-associated molecular pattern molecules), such as AGEs, HMGB1, and S100/calgranulins, and as an innate immune sensor, can recognize microbial PAMPs (pathogen-associated molecular pattern molecules), including bacterial LPS, bacterial DNA, and viral and parasitic proteins. RAGE and its ligands stimulate the activations of diverse pathways, such as p38MAPK, ERK1/2, Cdc42/Rac, and JNK, and trigger cascades of diverse signaling events that are involved in a wide spectrum of diseases, including diabetes mellitus, inflammatory, vascular and neurodegenerative diseases, atherothrombosis, and cancer. Thus, the targeted inhibition of RAGE or its ligands is considered an important strategy for the treatment of cancer and chronic inflammatory diseases.


Asunto(s)
Descubrimiento de Drogas , Terapia Molecular Dirigida , Receptor para Productos Finales de Glicación Avanzada/antagonistas & inhibidores , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Animales , Susceptibilidad a Enfermedades , Productos Finales de Glicación Avanzada/metabolismo , Humanos , Ligandos , Modelos Moleculares , Polimorfismo Genético , Isoformas de Proteínas , Receptor para Productos Finales de Glicación Avanzada/química , Receptor para Productos Finales de Glicación Avanzada/genética , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad
12.
Int J Mol Sci ; 22(9)2021 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-34066808

RESUMEN

Amyloid precursor protein (APP) is a type 1 transmembrane glycoprotein, and its homologs amyloid precursor-like protein 1 (APLP1) and amyloid precursor-like protein 2 (APLP2) are highly conserved in mammals. APP and APLP are known to be intimately involved in the pathogenesis and progression of Alzheimer's disease and to play important roles in neuronal homeostasis and development and neural transmission. APP and APLP are also expressed in non-neuronal tissues and are overexpressed in cancer cells. Furthermore, research indicates they are involved in several cancers. In this review, we examine the biological characteristics of APP-related family members and their roles in cancer.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Neoplasias/metabolismo , Precursor de Proteína beta-Amiloide/química , Animales , Humanos , Modelos Biológicos , Procesamiento Proteico-Postraduccional
13.
Int J Mol Sci ; 22(8)2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33921888

RESUMEN

The influenza virus causes human disease on a global scale and significant morbidity and mortality. The existing vaccination regime remains vulnerable to antigenic drift, and more seriously, a small number of viral mutations could lead to drug resistance. Therefore, the development of a new additional therapeutic small molecule-based anti-influenza virus is urgently required. The NS1 influenza gene plays a pivotal role in the suppression of host antiviral responses, especially by inhibiting interferon (IFN) production and the activities of antiviral proteins, such as dsRNA-dependent serine/threonine-protein kinase R (PKR) and 2'-5'-oligoadenylate synthetase (OAS)/RNase L. NS1 also modulates important aspects of viral RNA replication, viral protein synthesis, and virus replication cycle. Taken together, small molecules that target NS1 are believed to offer a means of developing new anti-influenza drugs.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Proteínas no Estructurales Virales/metabolismo , Animales , Humanos , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/genética , Gripe Humana/virología , Relación Estructura-Actividad , Proteínas no Estructurales Virales/genética , Replicación Viral/efectos de los fármacos , Replicación Viral/genética , Replicación Viral/fisiología
14.
Cells ; 10(4)2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33917906

RESUMEN

The KRAS oncogene is mutated in approximately ~30% of human cancers, and the targeting of KRAS has long been highlighted in many studies. Nevertheless, attempts to target KRAS directly have been ineffective. This review provides an overview of the structure of KRAS and its characteristic signaling pathways. Additionally, we examine the problems associated with currently available KRAS inhibitors and discuss promising avenues for drug development.


Asunto(s)
Antineoplásicos/farmacología , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Animales , Humanos , Modelos Biológicos , Neoplasias/metabolismo , Neoplasias/patología , Proteínas Proto-Oncogénicas p21(ras)/química , Transducción de Señal
15.
Biochem Biophys Res Commun ; 548: 39-46, 2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33631672

RESUMEN

PUMA (p53-upregulated modulator of apoptosis) is localized in mitochondria and a direct target in p53-mediated apoptosis. p53 elicits mitochondrial apoptosis via transcription-dependent and independent mechanisms. p53 is known to induce apoptosis via the transcriptional induction of PUMA, which encodes proapoptotic BH3-only members of the Bcl-2 protein family. However, the transcription-independent mechanisms of human PUMA remain poorly defined. For example, it is not known whether PUMA interacts directly with the DNA binding domain (DBD: residues 92-293) of p53 in vitro. Here, the structure of the complex between the DBD of p53 and PUMA peptide was elucidated by X-ray crystallography. Isothermal titration calorimetry showed that PUMA peptide binds strongly with p53 DBD, and the crystal structure of p53-PUMA peptide complex revealed it contains four molecules of p53 DBD and one PUMA peptide per asymmetric unit in space group P1. PUMA peptide bound to the N-terminal residues of p53 DBD. A cell proliferation assay demonstrated PUMA peptide inhibited the growth of a lung cancer cell line. These results contribute to understanding of the mechanism responsible for p53-mediated apoptosis.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , ADN/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/metabolismo , Secuencia de Aminoácidos , Proteínas Reguladoras de la Apoptosis/química , Calorimetría , Humanos , Unión Proteica , Dominios Proteicos , Proteínas Proto-Oncogénicas/química , Electricidad Estática , Zinc/metabolismo
16.
Cancers (Basel) ; 12(6)2020 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-32486141

RESUMEN

Kirsten-RAS (KRAS) has been the target of drugs because it is the most mutated gene in human cancers. Because of the low affinity of drugs for KRAS mutations, it was difficult to target these tumor genes directly. We found a direct interaction between KRAS G12V and tumor suppressor novel H-REV107 peptide with high binding affinity. We report the first crystal structure of an oncogenic mutant, KRAS G12V-H-REV107. This peptide was shown to interact with KRAS G12V in the guanosine diphosphate (GDP)-bound inactive state and to form a stable complex, blocking the activation function of KRAS. We showed that the peptide acted as an inhibitor of mutant KRAS targets by [α-32P] guanosine triphosphate (GTP) binding assay. The H-REV107 peptide inhibited pancreatic cancer and colon cancer cell lines in cell proliferation assay. Specially, the H-REV107 peptide can suppress pancreatic tumor growth by reduction of tumor volume and weight in xenotransplantation mouse models. Overall, the results presented herein will facilitate development of novel drugs for inhibition of KRAS mutations in cancer patients.

17.
Cancers (Basel) ; 11(7)2019 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-31324019

RESUMEN

Lactate dehydrogenase A (LDHA) is an important enzyme responsible for cancer growth and energy metabolism in various cancers via the aerobic glycolytic pathway. Here, we report that machilin A (MA), which acts as a competitive inhibitor by blocking the nicotinamide adenine dinucleotide (NAD) binding site of LDHA, suppresses growth of cancer cells and lactate production in various cancer cell types, including colon, breast, lung, and liver cancers. Furthermore, MA markedly decreased LDHA activity, lactate production, and intracellular adenosine triphosphate (ATP) levels induced by hypoxia-induced LDHA expression in cancer cells, and significantly inhibited colony formation, leading to reduced cancer cell survival. In mouse models inoculated with murine Lewis lung carcinoma, MA significantly suppressed tumor growth as observed by a reduction of tumor volume and weight; resulting from the inhibition of LDHA activity. Subsequently, the suppression of tumor-derived lactic acid in MA-treated cancer cells resulted in decrease of neovascularization through the regulation of alternatively activated macrophages (M2) polarization in macrophages. Taken together, we suggest that the reduction of lactate by MA in cancer cells directly results in a suppression of cancer cell growth. Furthermore, macrophage polarization and activation of endothelial cells for angiogenesis were indirectly regulated preventing lactate production in MA-treated cancer cells.

18.
J Microbiol Biotechnol ; 29(8): 1184-1192, 2019 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-31154753

RESUMEN

The influenza A virus is a highly infectious respiratory pathogen that sickens many people with respiratory disease annually. To prevent outbreaks of this viral infection, an understanding of the characteristics of virus-host interaction and development of an anti-viral agent is urgently needed. The influenza A virus can infect mammalian species including humans, pigs, horses and seals. Furthermore, this virus can switch hosts and form a novel lineage. This so-called zoonotic infection provides an opportunity for virus adaptation to the new host and leads to pandemics. Most influenza A viruses express proteins that antagonize the antiviral defense of the host cell. The non-structural protein 1 (NS1) of the influenza A virus is the most important viral regulatory factor controlling cellular processes to modulate host cell gene expression and double-stranded RNA (dsRNA)-mediated antiviral response. This review focuses on the influenza A virus NS1 protein and outlines current issues including the life cycle of the influenza A virus, structural characterization of the influenza A virus NS1, interaction between NS1 and host immune response factor, and design of inhibitors resistant to the influenza A virus.


Asunto(s)
Virus de la Influenza A/genética , Proteínas no Estructurales Virales/genética , Secuencia de Aminoácidos , Animales , Antivirales/farmacología , Regulación Viral de la Expresión Génica , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata , Virus de la Influenza A/fisiología , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Infecciones por Orthomyxoviridae/prevención & control , Conformación Proteica , ARN Bicatenario/genética , ARN Bicatenario/aislamiento & purificación , Proteínas no Estructurales Virales/metabolismo , Replicación Viral
19.
Biochem Biophys Res Commun ; 498(1): 9-17, 2018 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-29499196

RESUMEN

Cystein protease plays a critical role as a virulence factor in the development and progression of various diseases. Cystatin is a superfamily of cysteine protease inhibitors that participates in various physiological and pathological processes. The cysteine protease inhibitor CsStein-1 isolated from Clonorchis sinensis belongs to the type 1 stefin of cystatins. This inhibitor regulates the activity and processing of CsCF (Cathepsin F of Clonorchis sienesis), which plays an important role in parasite nutrition and host-parasite interaction. CsStefin-1 has also been proposed as a host immune modulator and a participant in the mechanism associated with anti-inflammatory ability. Here, we report the first crystal structure of CsStefin-1 determined by the multi-wavelength anomalous diffraction (MAD) method to 2.3 Å. There are six molecules of CsStefin-1 per asymmetric unit, with a solvent content of 36.5%. The structure of CsStefin-1 is composed of twisted four-stranded antiparallel ß-sheets, a central α-helix, and a short α-helix. We also demonstrate that CsStefin-1 binds to CsCF-8 cysteine protease and inhibits its activity. In addition, a molecular docking model of CsStefin-1 and CsCF-8 was developed using homology modeling based on their structures. The structural information regarding CsStefin-1 and molecular insight into its interaction with CsCF-8 are important to understanding their biological function and to design of inhibitors that modulate cysteine protease activity.


Asunto(s)
Clonorchis sinensis/química , Cistatinas/química , Inhibidores de Cisteína Proteinasa/química , Secuencia de Aminoácidos , Animales , Catepsina F/antagonistas & inhibidores , Catepsina F/metabolismo , Cristalización , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Unión Proteica
20.
BMB Rep ; 51(2): 73-78, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29397867

RESUMEN

Vascular endothelial growth factor and its receptor (VEGF-VEGFR) system play a critical role in the regulation of angiogenesis and lymphangiogenesis in vertebrates. Each of the VEGF has specific receptors, which it activates by binding to the extracellular domain of the receptors, and, thus, regulates the angiogenic balance in the early embryonic and adult stages. However, de-regulation of the VEGF-VEGFR implicates directly in various diseases, particularly cancer. Moreover, tumor growth needs a dedicated blood supply to provide oxygen and other essential nutrients. Tumor metastasis requires blood vessels to carry tumors to distant sites, where they can implant and begin the growth of secondary tumors. Thus, investigation of signaling systems related to the human disease, such as VEGF-VEGFR, will facilitate the development of treatments for such illnesses. [BMB Reports 2018; 51(2): 73-78].


Asunto(s)
Receptores de Factores de Crecimiento Endotelial Vascular/química , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/química , Factor A de Crecimiento Endotelial Vascular/metabolismo , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Humanos , Ligandos , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Transducción de Señal , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA