Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 8003, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39266523

RESUMEN

Decoupling dynamic touch signals in the optical tactile sensors is highly desired for behavioral tactile applications yet challenging because typical optical sensors mostly measure only static normal force and use imprecise multi-image averaging for dynamic force sensing. Here, we report a highly sensitive upconversion nanocrystals-based behavioral biometric optical tactile sensor that instantaneously and quantitatively decomposes dynamic touch signals into individual components of vertical normal and lateral shear force from a single image in real-time. By mimicking the sensory architecture of human skin, the unique luminescence signal obtained is axisymmetric for static normal forces and non-axisymmetric for dynamic shear forces. Our sensor demonstrates high spatio-temporal screening of small objects and recognizes fingerprints for authentication with high spatial-temporal resolution. Using a dynamic force discrimination machine learning framework, we realized a Braille-to-Speech translation system and a next-generation dynamic biometric recognition system for handwriting.


Asunto(s)
Tacto , Humanos , Tacto/fisiología , Dermatoglifia , Biometría/métodos , Biometría/instrumentación , Aprendizaje Automático , Nanopartículas/química , Identificación Biométrica/métodos , Identificación Biométrica/instrumentación
2.
J Korean Med Sci ; 39(32): e235, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39164057

RESUMEN

On May 1, 2024, the Republic of Korea lifted the infectious disease crisis alert for mpox, almost two years after the first case was reported. The Korea Disease Control and Prevention Agency (KDCA) has led the response, which included diagnosis, epidemiological investigations, treatment, and vaccination. This article particularly reviews the vaccination strategy implemented and proposes suggestions for enhancing future response efforts. Initially, the KDCA recommended pre-exposure prophylaxis for high-risk groups, later expanding to include broader demographics as domestic cases rose. By April 2024, a total of 6,863 individuals had received their first vaccine dose, with 3,875 completing the second dose of third-generation vaccines. Strategies to improve future responses include addressing stigma, securing nationally representative safety data, and conducting vaccine cost-benefit analyses. These measures will help ensure a robust and effective response to future outbreaks.


Asunto(s)
Salud Pública , Humanos , República de Corea , Programas de Inmunización , Vacunación
3.
ACS Nano ; 17(23): 24268-24281, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38044586

RESUMEN

Direct optical printing of functional inorganics shows tremendous potential as it enables the creation of intricate two-dimensional (2D) patterns and affordable design and production of various devices. Although there have been recent advancements in printing processes using short-wavelength light or pulsed lasers, the precise control of the vertical thickness in printed 3D structures has received little attention. This control is vital to the diverse functionalities of inorganic thin films and their devices, as they rely heavily on their thicknesses. This lack of research is attributed to the technical intricacy and complexity involved in the lithographic processes. Herein, we present a generalized optical 3D printing process for inorganic nanoparticles using maskless digital light processing. We develop a range of photocurable inorganic nanoparticle inks encompassing metals, semiconductors, and oxides, combined with photolinkable ligands and photoacid generators, enabling the direct solidification of nanoparticles in the ink medium. Our process creates complex and large-area patterns with a vertical resolution of ∼50 nm, producing 50-nm-thick 2D films and several micrometer-thick 3D architectures with no layer height difference via layer-by-layer deposition. Through fabrication and operation of multilayered switching devices with Au electrodes and Ag-organic resistive layers, the feasibility of our process for cost-effective manufacturing of multilayered devices is demonstrated.

4.
Nat Commun ; 13(1): 5262, 2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36071063

RESUMEN

Optical three-dimensional (3D) printing techniques have attracted tremendous attention owing to their applicability to mask-less additive manufacturing, which enables the cost-effective and straightforward creation of patterned architectures. However, despite their potential use as alternatives to traditional lithography, the printable materials obtained from these methods are strictly limited to photocurable resins, thereby restricting the functionality of the printed objects and their application areas. Herein, we report a generalised direct optical printing technique to obtain functional metal chalcogenides via digital light processing. We developed universally applicable photocurable chalcogenidometallate inks that could be directly used to create 2D patterns or micrometre-thick 2.5D architectures of various sizes and shapes. Our process is applicable to a diverse range of functional metal chalcogenides for compound semiconductors and 2D transition-metal dichalcogenides. We then demonstrated the feasibility of our technique by fabricating and evaluating a micro-scale thermoelectric generator bearing tens of patterned semiconductors. Our approach shows potential for simple and cost-effective architecturing of functional inorganic materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA