Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Philos Trans A Math Phys Eng Sci ; 366(1873): 2191-203, 2008 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-18348976

RESUMEN

Currents of particles have been quite successfully modelled using techniques developed for fluid gravity currents. These models require the rheology of the currents to be specified, which is determined by the interaction between particles. For relatively small slow currents, this is determined primarily through friction, which can be controlled and reduced by fluidizing the particles, so that they may become much more mobile. Recent results cannot be predicted using many of the proposed models, and may be defined by the interaction between the particles and the fluid through which they are passing. However, in addition, particles that are only initially fluidized also form currents that are also mobile, but otherwise are different from continuously fluidized currents. The mobility of these currents appears not to be connected to the time taken for them to degas. This suggests that defining the continuous stresses on the particle current may not be sufficient to understand its motion and that a challenge for the future is to understand the structure of these flows and how this affects their motion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...