Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Clin Chim Acta ; 561: 119812, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38876250

RESUMEN

GATM-related Fanconi renotubular syndrome 1 (FRTS1) is a form of renal Fanconi syndrome (RFS), which is a disorder of solute and water reabsorption caused by defects in the function of the entire proximal tubule. Recent findings reveal the molecular basis of FRTS1: Intramitochondrial fiber aggregation triggered by mutant GATM provides a starting point for proximal tubule damage and drives disease progression. As a rare and newly recognized inherited kidney disease, the complex manifestations of FRTS1 are easily underdiagnosed or misdiagnosed. We discuss the complex phenotype of a 26-year-old woman with onset in infancy and a long history of hypophosphatemic rickets. We also identified a novel heterozygous missense variant in the GATM gene in this patient. The novel variant and phenotype we report expand the disease spectrum of FRTS1. We recommend screening for GATM in children with RFS, especially in patients with resistant rickets who have previously had negative genetic testing. In addition, we found pathological deposition of mutant GATM proteins within mitochondria in the patient's urinary sediment cells by a combination of electron microscopy and immunofluorescence. This unique urine cytology experiment has the potential to be a valuable tool for identifying patients with RRTS1.


Asunto(s)
Síndrome de Fanconi , Fenotipo , Raquitismo Hipofosfatémico , Humanos , Femenino , Adulto , Síndrome de Fanconi/genética , Síndrome de Fanconi/diagnóstico , Síndrome de Fanconi/patología , Raquitismo Hipofosfatémico/genética , Raquitismo Hipofosfatémico/diagnóstico , Mutación Missense
2.
Parasitol Res ; 123(4): 176, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38573530

RESUMEN

Giardiasis is a common intestinal infection caused by Giardia duodenalis, which is a major economic and health burden for humans and livestock. Currently, a convenient and effective detection method is urgently needed. CRISPR/Cas12a-based diagnostic methods have been widely used for nucleic acid-based detection of pathogens due to their high efficiency and sensitivity. In this study, a technique combining CRISPR/Cas12a and RPA was established that allows the detection of G. duodenalis in faecal samples by the naked eye with high sensitivity (10-1 copies/µL) and specificity (no cross-reactivity with nine common pathogens). In clinical evaluations, the RPA-CRISPR/Cas12a-based detection assay detected Giardia positivity in 2% (1/50) of human faecal samples and 47% (33/70) of cattle faecal samples, respectively, which was consistent with the results of nested PCR. Our study demonstrated that the RPA-CRISPR/Cas12a technique for G. duodenalis is stable, efficient, sensitive, specific and has low equipment requirements. This technique offers new opportunities for on-site detection in remote and poor areas.


Asunto(s)
Giardia lamblia , Giardiasis , Humanos , Animales , Bovinos , Giardia lamblia/genética , Sistemas CRISPR-Cas , Giardiasis/diagnóstico , Giardiasis/veterinaria , Giardia/genética , Bioensayo
4.
Environ Sci Pollut Res Int ; 28(1): 1052-1060, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32829435

RESUMEN

In the present study, a magnetic adsorbent, rhein-coated magnetic Fe3O4 nanoparticle (RMNP), for Pb2+ and Mg2+ had been developed, and adsorption mechanism was studied via low-field NMR. RMNP was characterized by TEM, FTIR, and XRD. RMNP could adsorb and remove Pb2+ and Mg2+ from water and was successfully applied to remove Pb2+ and Mg2+ from wastewater, with satisfactory recovery rates and high adsorption capacities. The calculated maximum adsorption capacity for Mg2+ and Pb2+ was approximately 69.3 and 64.9 mg g-1 of RMNP, respectively, which was better than some results reported. Low-field NMR results showed that Pb2+ or Mg2+ enhanced the T2 relaxation time of RMNP, which suggested that RMNP selectively coordinated with Pb2+ or Mg2+ and led to the aggregation of RMNP, furthermore removal of Pb2+ or Mg2+ from water. The standard curves for △T2-cation concentration exhibited good line correlation. The linear ranges were from 4.2 × 10-6 to 2.0 × 10-4 mol L-1 for Pb2+ and from 5.0 × 10-6 mol L-1 to 1.0 × 10-4 mol L-1 for Mg2+, respectively. The limits of detection were 1.4 × 10-6 mol L-1 for Pb2+ and 2.1 × 10-6 mol L-1 for Mg2+, respectively. In short, low-field NMR could clearly display the interaction between RMNP and Pb2+ or Mg2+, even be used to detect Pb2+ or Mg2+ in suitable condition. Besides, this method could be expanded to study the interaction between other magnetic adsorbents and analytes.


Asunto(s)
Contaminantes Químicos del Agua , Adsorción , Antraquinonas , Cinética , Fenómenos Magnéticos , Contaminantes Químicos del Agua/análisis
6.
Stem Cell Res Ther ; 11(1): 454, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33109258

RESUMEN

BACKGROUND: Human hair follicle mesenchymal stem cells (hHFMSCs) isolated from hair follicles possess multilineage differentiation potential. OCT4 is a gene critically associated with pluripotency properties. The cell morphology and adhesion of hHFMSCs significantly changed after transduction of OCT4 and two subpopulations emerged, including adherent cells and floating cell. Floating cells cultured in hematopoietic induction medium and stimulated with erythropoetic growth factors could transdifferentiate into mature erythrocytes, whereas adherent cells formed negligible hematopoietic colonies. The aim of this study was to reveal the role of cell morphology and adhesion on erythropoiesis induced by OCT4 in hHFMSCs and to characterize the molecular mechanisms involved. METHODS: Floating cell was separated from adherent cell by centrifugation of the upper medium during cell culture. Cell size was observed through flow cytometry and cell adhesion was tested by disassociation and adhesion assays. RNA sequencing was performed to detect genome-wide transcriptomes and identify differentially expressed genes. GO enrichment analysis and KEGG pathway analysis were performed to analysis the functions and pathways enriched by differentially expressed genes. The expression of tight junction core members was verified by qPCR and Western blot. A regulatory network was constructed to figure out the relationship between cell adhesin, cytoskeleton, pluripotency, and hematopoiesis. RESULTS: The overexpression of OCT4 influenced the morphology and adhesion of hHFMSCs. Transcripts in floating cells and adherent cells are quite different. Data analysis showed that upregulated genes in floating cells were mainly related to pluripotency, germ layer development (including hematopoiesis lineage development), and downregulated genes were mainly related to cell adhesion, cell junctions, and the cytoskeleton. Most molecules of the tight junction (TJ) pathway were downregulated and molecular homeostasis of the TJ was disturbed, as CLDNs were disrupted, and JAMs and TJPs were upregulated. The dynamic expression of cell adhesion-related gene E-cadherin and cytoskeleton-related gene ACTN2 might cause different morphology and adhesion. Finally, a regulatory network centered to OCT4 was constructed, which elucidated that he TJ pathway critically bridges pluripotency and hematopoiesis in a TJP1-dependent way. CONCLUSIONS: Regulations of cell morphology and adhesion via the TJ pathway conducted by OCT4 might modulate hematopoiesis in hHFMSCs, thus developing potential mechanism of erythropoiesis in vitro.


Asunto(s)
Eritropoyesis , Folículo Piloso/citología , Células Madre Mesenquimatosas , Factor 3 de Transcripción de Unión a Octámeros , Uniones Estrechas , Diferenciación Celular , Humanos , Masculino , Factor 3 de Transcripción de Unión a Octámeros/genética , RNA-Seq
7.
Front Microbiol ; 11: 1548, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32733423

RESUMEN

Alterations in the microbiome are associated with the development of gastric cancer. Our study aimed to identify dysbiotic features in early gastric cancer (EC). The gastric microbiome was assessed in EC (n = 30), advanced gastric cancer (AC) (n = 30), and chronic gastritis (CG) (n = 60). The results demonstrated significant differences in the microbial profile and composition between EC and AC, suggesting alterations associated with gastric cancer progression. Linear discriminant analysis (LDA) effect size (LEfSe) analyses identified 32 bacterial genera that were associated with EC. Functional analyses of the gastric microbiome showed that the production of urease and synthesis of bacterial flagella were weakened in EC, while the glycolysis of fructose and hydrolysis of glycosides were enhanced. A classifier based on a random forest (RF) machine learning algorithm identified a microbial signature that distinguished EC from CG or AC with high accuracy. The correct identification of the signature was further validated in independent cohorts. This signature enriched of bacteria with varied abundance, high degree of bacterial interactions and carcinogenic potentials. Constrained principal coordinate analyses revealed that the presence of Helicobacter pylori and the cagA and vacA virulence genotypes influenced the structure of the gastric microbiome. To determine the impacts of host genetic variations on the gastric microbiome, six previously reported single nucleotide polymorphisms (SNPs) were examined. The minor allele of MUC1 rs4072037 was associated with an increased abundance of Ochrobactrum. The gastric microbiome altered in EC, which might be attributed in part to host genetic variations, H. pylori infection, bacterial virulence and environmental adaptations. The identified microbial signature could serve as biomarkers for clinical assessment of gastric cancer risk in high-risk patients.

8.
Korean J Parasitol ; 58(2): 173-179, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32418386

RESUMEN

Leishmaniasis is a prevalent cause of death and animal morbidity in underdeveloped countries of endemic area. However, there is few vaccine and effective drugs. Antimicrobial peptides are involved in the innate immune response in many organisms and are being developed as novel drugs against parasitic infections. In the present study, we synthesized a 5-amino acid peptide REDLK, which mutated the C-terminus of Pseudomonas exotoxin, to identify its effect on the Leishmania tarentolae. Promastigotes were incubated with different concentration of REDLK peptide, and the viability of parasite was assessed using MTT and Trypan blue dye. Morphologic damage of Leishmania was analyzed by light and electron microscopy. Cellular apoptosis was observed using the annexin V-FITC/PI apoptosis detection kit, mitochondrial membrane potential assay kit and flow cytometry. Our results showed that Leishmania tarentolae was susceptible to REDLK in a dose-dependent manner, disrupt the surface membrane integrity and caused parasite apoptosis. In our study, we demonstrated the leishmanicidal activity of an antimicrobial peptide REDLK from Pseudomonas aeruginosa against Leishmania tarentolae in vitro and present a foundation for further research of anti-leishmanial drugs.


Asunto(s)
Proteínas Bacterianas/farmacología , Leishmania/efectos de los fármacos , Leishmania/crecimiento & desarrollo , Péptidos/farmacología , Pseudomonas/metabolismo , Técnicas In Vitro
9.
Acta Biochim Biophys Sin (Shanghai) ; 51(12): 1286-1292, 2019 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-31761925

RESUMEN

Leishmaniasis, caused by the intracellular protozoan parasite Leishmania, remains an important neglected tropical infectious disease. Infection may be lethal if untreated. Currently, the available drugs for the disease are limited by high toxicity and drug resistance. There is an urgent need to develop novel anti-leishmanial strategies. Antimicrobial peptides (AMPs) have been described as the first-line immune defense against pathogenic microbes and are being developed as emerging anti-parasitic therapies. In the present study, we showed the anti-leishmanial activity of the synthetic 4-amino acid peptide lysine, aspartic acid, glutamic acid, and leucine (KDEL), the endoplasmic reticulum retention sequence, against Leishmania tarentolae promastigote and amastigote. Different concentrations of KDEL peptides were incubated with promastigotes, MTT viability assay, and promastigote assay were carried out. Macrophages infected with GFP-transfected L. tarentolae promastigotes were incubated with KDEL peptides, and the anti-amastigote activity of the KDEL peptides was measured by fluorescence microscopy. The damage of L. tarentolae was observed by light microscopy and electron microscopy. The cell apoptosis was analyzed using the Annexin V-FITC/PI apoptosis detection kit and mitochondrial membrane potential assay kit and by flow cytometry. Results showed that L. tarentolae was susceptible to KDEL peptides in a dose-dependent manner, and KDEL peptides disrupted the surface membrane integrity and caused cell apoptosis. In our study, we found for the first time an AMP KDEL from Pseudomonas aeruginosa and proved its significant therapeutic potential as a novel anti-leishmanial drug.


Asunto(s)
Antiinfecciosos/farmacología , Leishmania/efectos de los fármacos , Leishmaniasis/tratamiento farmacológico , Péptidos/farmacología , Animales , Ratones Endogámicos BALB C , Pseudomonas aeruginosa/metabolismo
10.
NMR Biomed ; 32(6): e4091, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30968985

RESUMEN

Mitochondrial dysfunction is considered to be an important component of many metabolic diseases yet there is no reliable imaging biomarker for monitoring mitochondrial damage in vivo. A large prior literature on inter-conversion of ß-hydroxybutyrate and acetoacetate indicates that the process is mitochondrial and that the ratio reflects a specifically mitochondrial redox state. Therefore, the conversion of [1,3-13 C]acetoacetate to [1,3-13 C]ß-hydroxybutyrate is expected to be sensitive to the abnormal redox state present in dysfunctional mitochondria. In this study, we examined the conversion of hyperpolarized (HP) 13 C-acetoacetate (AcAc) to 13 C-ß-hydroxybutyrate (ß-HB) as a potential imaging biomarker for mitochondrial redox and dysfunction in perfused rat hearts. Conversion of HP-AcAc to ß-HB was investigated using 13 C magnetic resonance spectroscopy in Langendorff-perfused rat hearts in four groups: control, global ischemic reperfusion, low-flow ischemic, and rotenone (mitochondrial complex-I inhibitor)-treated hearts. We observed that more ß-HB was produced from AcAc in ischemic hearts and the hearts exposed to complex I inhibitor rotenone compared with controls, consistent with the accumulation of excess mitochondrial NADH. The increase in ß-HB, as detected by 13 C MRS, was validated by a direct measure of tissue ß-HB by 1 H nuclear magnetic resonance in tissue extracts. The redox ratio, NAD+ /NADH, measured by enzyme assays of homogenized tissue, also paralleled production of ß-HB from AcAc. Transmission electron microscopy of tissues provided direct evidence for abnormal mitochondrial structure in each ischemic tissue model. The results suggest that conversion of HP-AcAc to HP-ß-HB detected by 13 C-MRS may serve as a useful diagnostic marker of mitochondrial redox and dysfunction in heart tissue in vivo.


Asunto(s)
Ácido 3-Hidroxibutírico/metabolismo , Acetoacetatos/metabolismo , Isótopos de Carbono/metabolismo , Corazón/fisiopatología , Espectroscopía de Resonancia Magnética , Mitocondrias/metabolismo , Animales , Espectroscopía de Resonancia Magnética con Carbono-13 , Congelación , Hemodinámica , Masculino , Mitocondrias/ultraestructura , Miocardio/metabolismo , Miocardio/ultraestructura , NAD/metabolismo , Oxidación-Reducción , Perfusión , Espectroscopía de Protones por Resonancia Magnética , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA