Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Arch Pharm (Weinheim) ; : e2400593, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39286848

RESUMEN

Mild cognitive impairment (MCI) is a neurodegenerative condition that is clinically prevalent among the elderly. EGB761 is widely recognized for its promising therapeutic properties in both the prevention and treatment of neurodegenerative disorders. The aim of this study was to investigate the effects of EGB761 in MCI and the underlying molecular mechanism. Four-month-old SAMP8 mice were used as an in vivo MCI model, and BV2 microglial cells were treated with ß-amyloid (Aß) 1-42 to establish an in vitro model. First, the cognitive function was evaluated by the Morris water maze. Then, Aß levels were measured by enzyme-linked immunosorbent assay. Finally, the underlying molecular mechanism was investigated both in vivo and in vitro. It was found that EGB761 treatment improved the cognitive impairment of SAMP8 mice. In addition, EGB761 inhibited NOD-like receptor protein 3 inflammasome-mediated pyroptosis-related mRNAs and proteins and reduced pyroptosis markers, including gasdermin D fluorescence intensity, propidium iodide-positive cell count, and the lactate dehydrogenase content. Furthermore, EGB761 inhibited extrinsic and intrinsic apoptosis. Thus, EGB761 had protective effects against pyroptosis and apoptosis in BV2 microglial cells induced by Aß1-42 and SAMP8 mice.

2.
Int Immunopharmacol ; 142(Pt B): 113146, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39298819

RESUMEN

The cognitive decline associated with chronic metabolic disease diabetes has garnered extensive scrutiny, yet its pathogenesis remains incompletely understood, and the advancement of targeted therapeutics has posed a persistent challenge. Ferroptosis, a novel form of cell death characterized by intracellular lipid peroxidation and iron overload, has recently emerged as a significant factor. Numerous contemporary studies have corroborated that ferroptosis within the neurovascular unit is intimately associated with the onset of diabetes-induced cognitive impairment. Numerous contemporary studies have corroborated that ferroptosis within the neurovascular unit is intimately associated with the onset of diabetic cognitive impairment (DCI). This article initially conducts a profound analysis of the mechanism of ferroptosis, followed by a detailed elucidation of the specific manifestations of neurovascular unit ferroptosis in the context of diabetic cognitive function impairment. Furthermore, an exhaustive review of pertinent literature from April 2020 to March 2024 has been undertaken, resulting in the selection of 31 documents of significant reference value. These documents encompass studies on 11 distinct drugs, all of which are centered around investigating methods to inhibit the ferroptosis pathway as a potential treatment for DCI. Simultaneously, we conducted a review of 12 supplementary literary sources that presented 10 pharmacological agents with anti-ferroptosis properties in other neurodegenerative disorders. This article critically examines the potential influence of neurovascular unit ferroptosis on the progression of cognitive impairment in diabetes, from the three aforementioned perspectives, and organizes the existing and potential therapeutic drugs. It is our aspiration that this article will serve as a theoretical foundation for scholars in related disciplines when conceptualizing, investigating, and developing novel clinical drugs for DCI.

3.
Biomed Pharmacother ; 179: 117272, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39153432

RESUMEN

Calpain, a key member of the Calpain cysteine protease superfamily, performs limited protein hydrolysis in a calcium-dependent manner. Its activity is tightly regulated due to the potential for non-specific cleavage of various intracellular proteins upon aberrant activation. A thorough review of the literature from 2010 to 2023 reveals 121 references discussing cardiovascular and cerebrovascular diseases. Dysregulation of the Calpain system is associated with various pathological phenomena, including lipid metabolism disorders, inflammation, apoptosis, and excitotoxicity. Although recent studies have revealed the significant role of Calpain in cardiovascular and cerebrovascular diseases, the precise mechanisms remain incompletely understood. Exploring the potential of Calpain inhibition as a therapeutic approach for the treatment of cardiovascular and cerebrovascular diseases may emerge as a compelling area of interest for future calpain research.


Asunto(s)
Calpaína , Enfermedades Cardiovasculares , Trastornos Cerebrovasculares , Humanos , Calpaína/metabolismo , Enfermedades Cardiovasculares/metabolismo , Animales , Trastornos Cerebrovasculares/metabolismo , Trastornos Cerebrovasculares/tratamiento farmacológico
4.
Arch Pharm (Weinheim) ; : e2400459, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39180246

RESUMEN

The NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome is a key component of the innate immune system that triggers inflammation and pyroptosis and contributes to the development of several diseases. Therefore, blocking the activation of the NLRP3 inflammasome has therapeutic potential for the treatment of these diseases. MCC950, a selective small molecule inhibitor, has emerged as a promising candidate for blocking NLRP3 inflammasome activation. Ongoing research is focused on elucidating the specific targets of MCC950 as well as assessfing its metabolism and safety profile. This review discusses the diseases that have been studied in relation to MCC950, with a focus on stroke, Alzheimer's disease, liver injury, atherosclerosis, diabetes mellitus, and sepsis, using bibliometric analysis. It then summarizes the potential pharmacological targets of MCC950 and discusses its toxicity. Furthermore, it traces the progression from preclinical to clinical research for the treatment of these diseases. Overall, this review provides a solid foundation for the clinical therapeutic potential of MCC950 and offers insights for future research and therapeutic approaches.

5.
J Physiol Investig ; 67(2): 88-102, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38780293

RESUMEN

ABSTRACT: The traditional Chinese herbal prescription Buyang Huanwu decoction (BHD), effectively treats atherosclerosis. However, the mechanism of BHD in atherosclerosis remains unclear. We aimed to determine whether BHD could alleviate atherosclerosis by altering the microbiome-associated metabolic changes in atherosclerotic mice. An atherosclerotic model was established in apolipoprotein E-deficient mice fed high-fat diet, and BHD was administered through gavage for 12 weeks at 8.4 g/kg/d and 16.8 g/kg/d. The atherosclerotic plaque size, composition, serum lipid profile, and inflammatory cytokines, were assessed. Mechanistically, metabolomic and microbiota profiles were analyzed by liquid chromatography-mass spectrometry and 16S rRNA gene sequencing, respectively. Furthermore, intestinal microbiota and atherosclerosis-related metabolic parameters were correlated using Spearman analysis. Atherosclerotic mice treated with BHD exhibited reduced plaque area, aortic lumen occlusion, and lipid accumulation in the aortic root. Nine perturbed serum metabolites were significantly restored along with the relative abundance of microbiota at the family and genus levels but not at the phylum level. Gut microbiome improvement was strongly negatively correlated with improved metabolite levels. BHD treatment effectively slows the progression of atherosclerosis by regulating altered intestinal microbiota and perturbed metabolites.


Asunto(s)
Apolipoproteínas E , Aterosclerosis , Dieta Alta en Grasa , Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , Animales , Ratones , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/patología , Aterosclerosis/metabolismo , Dieta Alta en Grasa/efectos adversos , Medicamentos Herbarios Chinos/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Noqueados para ApoE , Placa Aterosclerótica/tratamiento farmacológico , Placa Aterosclerótica/patología
6.
Sci Rep ; 14(1): 12377, 2024 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811632

RESUMEN

Sacubitril/valsartan has been highly recognized as a treatment for Chronic heart failure (CHF). Its potential cardioprotective benefits and mechanisms, however, remain to be explored. Metabolomics can be used to identify the metabolic characteristics and related markers, as well as the influence of drugs, thereby opening up the new mechanism for sacubitril/valsartan therapy in CHF disease. In this study, the ligation of left anterior descending and exhaustive swimming were used to induce a rat model of CHF after myocardial infarction. The efficacy was appraised with echocardiography, serum NT-proBNP, and histopathologica. UPLC-Q/TOF-MS combined with multivariate statistical analysis approach were used to analyze the effect of sacubitril/valsartan on CHF rats. RT-qPCR and western blot were performed to investigate the tryptophan/kynurenine metabolism pathway. Accordingly, the basal cardiac function were increased, while the serum NT-proBNP and collagen volume fraction decreased in CHF rats with sacubitril/valsartan. Sacubitril/valsartan regulated the expression of kynurenine et.al 8 metabolomic biomarkers in CHF rats serum, and it contributed to the cardioprotective effects through tryptophan metabolism pathway. In addition, the mRNA and protein expression of the indoleamine 2,3-dioxygenase (IDO) in the myocardial tissue of CHF rats, were down-regulated by sacubitril/valsartan, which was the same with the IL-1ß, IFN-γ, TNF-α, COX-2, and IL-6 mRNA expression, and IL-1ß, IFN-γ, and TNF-α expression in serum. In conclusion, sacubitril/valsartan can ameliorate cardiac function and ventricular remodeling in CHF rats, at least in part through inhibition of tryptophan/kynurenine metabolism.


Asunto(s)
Aminobutiratos , Compuestos de Bifenilo , Combinación de Medicamentos , Insuficiencia Cardíaca , Inflamación , Quinurenina , Tetrazoles , Triptófano , Valsartán , Remodelación Ventricular , Animales , Aminobutiratos/farmacología , Valsartán/farmacología , Compuestos de Bifenilo/farmacología , Remodelación Ventricular/efectos de los fármacos , Quinurenina/metabolismo , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Ratas , Triptófano/metabolismo , Masculino , Tetrazoles/farmacología , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Modelos Animales de Enfermedad , Péptido Natriurético Encefálico/metabolismo , Péptido Natriurético Encefálico/sangre , Ratas Sprague-Dawley
7.
Exp Neurol ; 378: 114814, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38762094

RESUMEN

Cerebral ischemia-reperfusion injury (CIRI) poses significant challenges for drug development due to its complex pathogenesis. Astrocyte involvement in CIRI pathogenesis has led to the development of novel astrocyte-targeting drug strategies. To comprehensively review the current literature, we conducted a thorough analysis from January 2012 to December 2023, identifying 82 drugs aimed at preventing and treating CIRI. These drugs target astrocytes to exert potential benefits in CIRI, and their primary actions include modulation of relevant signaling pathways to inhibit neuroinflammation and oxidative stress, reduce cerebral edema, restore blood-brain barrier integrity, suppress excitotoxicity, and regulate autophagy. Notably, active components from traditional Chinese medicines (TCM) such as Salvia miltiorrhiza, Ginkgo, and Ginseng exhibit these important pharmacological properties and show promise in the treatment of CIRI. This review highlights the potential of astrocyte-targeted drugs to ameliorate CIRI and categorizes them based on their mechanisms of action, underscoring their therapeutic potential in targeting astrocytes.


Asunto(s)
Astrocitos , Isquemia Encefálica , Daño por Reperfusión , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Humanos , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Animales , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/farmacología
8.
Hum Immunol ; 85(2): 110765, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38369442

RESUMEN

Numerous cardiovascular disorders have atherosclerosis as their pathological underpinning. Numerous studies have demonstrated that, with the aid of pattern recognition receptors, cytokines, and immunoglobulins, innate immunity, represented by monocytes/macrophages, and adaptive immunity, primarily T/B cells, play a critical role in controlling inflammation and abnormal lipid metabolism in atherosclerosis. Additionally, the finding of numerous complement components in atherosclerotic plaques suggests yet again how heavily the immune system controls atherosclerosis. Therefore, it is essential to have a thorough grasp of how the immune system contributes to atherosclerosis. The specific molecular mechanisms involved in the activation of immune cells and immune molecules in atherosclerosis, the controversy surrounding some immune cells in atherosclerosis, and the limitations of extrapolating from relevant animal models to humans were all carefully reviewed in this review from the three perspectives of innate immunity, adaptive immunity, and complement system. This could provide fresh possibilities for atherosclerosis research and treatment in the future.


Asunto(s)
Aterosclerosis , Animales , Humanos , Inmunidad Innata , Inmunidad Adaptativa , Inflamación , Leucocitos/patología
9.
Phytother Res ; 38(3): 1651-1680, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38299680

RESUMEN

Drug development for atherosclerosis, the underlying pathological state of ischemic cardiovascular diseases, has posed a longstanding challenge. Saponins, classified as steroid or triterpenoid glycosides, have shown promising therapeutic potential in the treatment of atherosclerosis. Through an exhaustive examination of scientific literature spanning from May 2013 to May 2023, we identified 82 references evaluating 37 types of saponins in terms of their prospective impacts on atherosclerosis. These studies suggest that saponins have the potential to ameliorate atherosclerosis by regulating lipid metabolism, inhibiting inflammation, suppressing apoptosis, reducing oxidative stress, and modulating smooth muscle cell proliferation and migration, as well as regulating gut microbiota, autophagy, endothelial senescence, and angiogenesis. Notably, ginsenosides exhibit significant potential and manifest essential pharmacological attributes, including lipid-lowering, anti-inflammatory, anti-apoptotic, and anti-oxidative stress effects. This review provides a comprehensive examination of the pharmacological attributes of saponins in atherosclerosis, with particular emphasis on their role in the regulation of lipid metabolism regulation and anti-inflammatory effects. Thus, saponins may warrant further investigation as a potential therapy for atherosclerosis. However, due to various reasons such as low oral bioavailability, the clinical application of saponins in the treatment of atherosclerosis still needs further exploration.


Asunto(s)
Aterosclerosis , Ginsenósidos , Saponinas , Humanos , Saponinas/farmacología , Estudios Prospectivos , Aterosclerosis/tratamiento farmacológico , Ginsenósidos/farmacología , Antiinflamatorios
10.
Heliyon ; 10(1): e24198, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38226205

RESUMEN

Meropenem, linezolid, fluconazole, voriconazole, posaconazole, and vancomycin are six important antimicrobials used for severe infections in critically ill patients listed in special-grade antimicrobials in China. The six antimicrobials' highly variable pharmacodynamics and pharmacokinetics in critically ill pediatric patients present significant challenges to clinicians in ensuring optimal therapeutic targets. Therefore, therapeutic drug monitoring of these antimicrobials in human plasma is necessary to obtain their plasma concentration. A rapid, simple, and sample-saving high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed, which could simultaneously determine all six antimicrobials. It required only 10 µL of plasma and a one-step protein precipitation process. Chromatographic separation was achieved on a reversed-phase column (C18, 30 × 2.1 mm, 2.6 µm) via gradient elution using water and acetonitrile containing 0.1 % formic acid as mobile phase. The injection volume was 2 µL, and the total run time was only 2.5 min. Detection was done using a Triple Quad™ 4500MD tandem mass spectrometer coupled with an electrospray ionization (ESI) source in positive mode. The calibration curves ranged from 0.5 to 64 µg/mL for meropenem and fluconazole, 0.2-25.6 µg/mL for linezolid and voriconazole, 0.1-12.8 µg/mL for posaconazole and 1-128 µg/mL for vancomycin, with the coefficients of correlation all greater than 0.996. Furthermore, the method was validated rigorously according to the European Medicines Agency (EMA) guidelines, demonstrating excellent accuracy (from 93.0 % to 110.6 %) and precision (from 2.0 % to 12.8 %). Moreover, its applicability to various matrices (including serum, hemolytic plasma, and hyperlipidemic plasma) was evaluated. Thus, this method was successfully applied to routine therapeutic drug monitoring for critically ill pediatric patients and other patients in need.

11.
J Ethnopharmacol ; 324: 117814, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38286155

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Tiaogan Daozhuo Formula (TGDZF) is a common formulation against atherosclerosis, however, there is limited understanding of its therapeutic mechanism. AIM OF THIS STUDY: To examine the effectiveness of TGDZF in the treatment of atherosclerosis and to explore its mechanisms. MATERIALS AND METHODS: In ApoE-/- mice, atherosclerosis was induced by a high-fat diet for 12 weeks and treated with TGDZF at different doses. The efficacy of TGDZF in alleviating atherosclerosis was evaluated by small animal ultrasound and histological methods. Lipid levels were measured by biochemical methods. The capacity of cholesterol efflux was tested with a cholesterol efflux assay in peritoneal macrophage, and the expression of AMPKα1, PPARγ, LXRα, and ABCA1 was examined at mRNA and protein levels. Meanwhile, RAW264.7-derived macrophages were induced into foam cells by ox-LDL, and different doses of TGDZF-conducting serum were administered. Similarly, we examined differences in intracellular lipid accumulation, cholesterol efflux rate, and AMPKα1, PPARγ, LXRα, and ABCA1 levels following drug intervention. Finally, changes in the downstream molecules were evaluated following the inhibition of AMPK by compound C or PPARγ silencing by small interfering RNA. RESULTS: TGDZF administration reduced aortic plaque area and lipid accumulation in aortic plaque and hepatocytes, and improved the serum lipid profiles of ApoE-/- mice. Further study revealed that its efficacy was accompanied by an increase in cholesterol efflux rate and the expression of PPARγ, LXRα, and ABCA1 mRNA and protein, as well as the promotion of AMPKα1 phosphorylation. Moreover, similar results were caused by the intervention of TGDZF-containing serum in vitro experiments. Inhibition of AMPK and PPARγ partially blocked the regulatory effect of TGDZF, respectively. CONCLUSIONS: TGDZF alleviated atherosclerosis and promoted cholesterol efflux from macrophages by activating the AMPK-PPARγ-LXRα-ABCA1 pathway.


Asunto(s)
Aterosclerosis , PPAR gamma , Animales , Ratones , PPAR gamma/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Colesterol/metabolismo , Receptores X del Hígado/metabolismo , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/prevención & control , Aterosclerosis/metabolismo , Células Espumosas , Apolipoproteínas E/genética , ARN Mensajero/metabolismo
12.
Biofactors ; 50(1): 74-88, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37458329

RESUMEN

Endothelial pyroptosis promotes cerebral ischemia/reperfusion injury (CIRI). Sodium Danshensu (SDSS) has been shown to attenuate CIRI and have anti-inflammatory properties in endothelial cells. However, the mechanism and effect of SDSS on alleviating endothelial pyroptosis after CIRI remains poorly understood. Thus, we aimed to investigate the efficacy and mechanism of SDSS in reducing endothelial pyroptosis. It has been shown that SDSS administration inhibited NLRP3 inflammasome-mediated pyroptosis. As demonstrated by protein microarrays, molecular docking, CETSA and ITDRFCETSA , SDSS bound strongly to CLIC4. Furthermore, SDSS can decrease its expression and inhibit its translocation. Its effectiveness was lowered by CLIC4 overexpression but not by knockdown. Overall The beneficial effect of SDSS against CIRI in this study can be ascribed to blocking endothelial pyroptosis by binding to CLIC4 and then inhibiting chloride efflux-dependent NLRP3 inflammasome activation.


Asunto(s)
Isquemia Encefálica , Lactatos , Daño por Reperfusión , Humanos , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis , Células Endoteliales/metabolismo , Simulación del Acoplamiento Molecular , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/genética , Canales de Cloruro/genética , Canales de Cloruro/farmacología
13.
Chin J Integr Med ; 30(3): 277-288, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38057549

RESUMEN

As a serious cardiovascular disease, atherosclerosis (AS) causes chronic inflammation and oxidative stress in the body and poses a threat to human health. Lipoprotein-associated phospholipase A2 (Lp-PLA2) is a member of the phospholipase A2 (PLA2) family, and its elevated levels have been shown to contribute to AS. Lp-PLA2 is closely related to a variety of lipoproteins, and its role in promoting inflammatory responses and oxidative stress in AS is mainly achieved by hydrolyzing oxidized phosphatidylcholine (oxPC) to produce lysophosphatidylcholine (lysoPC). Moreover, macrophage apoptosis within plaque is promoted by localized Lp-PLA2 which also promotes plaque instability. This paper reviews those researches of Chinese medicine in treating AS via reducing Lp-PLA2 levels to guide future experimental studies and clinical applications related to AS.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Humanos , 1-Alquil-2-acetilglicerofosfocolina Esterasa , Medicina Tradicional China , Aterosclerosis/tratamiento farmacológico , Lipoproteínas , Biomarcadores
14.
Mediators Inflamm ; 2023: 7807302, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37954637

RESUMEN

Background: Alleviating mild cognitive impairment (MCI) is crucial to delay the progression of Alzheimer's disease (AD). Jia-Wei-Kai-Xin-San (JWKXS) is applied for treating AD with MCI. However, the mechanism of JWKXS in the treatment of MCI is unclear. Thus, this study aimed to investigate the effect and mechanism of JWKXS in SAMP8 mice models of MCI. Methods: MCI models were established to examine learning and memory ability and explore the pathomechanisms in brain of SAMP8 mice at 4, 6, and 8 months. The mice were treated for 8 weeks and the effects of JWKXS on MCI were characterized through Morris water maze and HE/Nissl's/immunohistochemical staining. Its mechanism was predicted by the combination of UPLC-Q-TOF/MS and system pharmacology analysis, further verified with SAMP8 mice, BV2 microglial cells, and PC12 cells. Results: It was found that 4-month-old SAMP8 mice exhibited MCI. Two months of JWKXS treatment improved the learning and memory ability, alleviated the hippocampal tissue and neuron damage. Through network pharmacology, four key signaling pathways were found to be involved in treatment of MCI by JWKXS, including TLR4/NF-κB pathway, NLRP3 inflammasome activation, and intrinsic and extrinsic apoptosis. In vitro and in vivo experiments demonstrated that JWKXS attenuated neuroinflammation by inhibiting microglia activation, suppressing TLR4/NF-κB and NLRP3 inflammasome pathways, and blocking the extrinsic and intrinsic apoptotic pathways leading to neuronal apoptosis suppression in the hippocampus. Conclusion: JWKXS treatment improved the learning and memory ability and conferred neuroprotective effects against MCI by inducing anti-inflammation and antiapoptosis. Limitations. The small sample size and short duration of the intervention limit in-depth investigation of the mechanisms. Future Prospects. This provides a direction for further clarification of the anti-AD mechanism, and provides certain data support for the formulation to move toward clinical practice.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Ratas , Ratones , Animales , Inflamasomas/metabolismo , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Receptor Toll-Like 4/metabolismo , Disfunción Cognitiva/tratamiento farmacológico , Enfermedad de Alzheimer/tratamiento farmacológico , Antiinflamatorios/uso terapéutico
15.
Int J Mol Med ; 52(5)2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37800614

RESUMEN

The intricate nature of Alzheimer's disease (AD) pathogenesis poses a persistent obstacle to drug development. In recent times, neuroinflammation has emerged as a crucial pathogenic mechanism of AD, and the targeting of inflammation has become a viable approach for the prevention and management of AD. The present study conducted a comprehensive review of the literature between October 2012 and October 2022, identifying a total of 96 references, encompassing 91 distinct pharmaceuticals that have been investigated for their potential impact on AD by inhibiting neuroinflammation. Research has shown that pharmaceuticals have the potential to ameliorate AD by reducing neuroinflammation mainly through regulating inflammatory signaling pathways such as NF­κB, MAPK, NLRP3, PPARs, STAT3, CREB, PI3K/Akt, Nrf2 and their respective signaling pathways. Among them, tanshinone IIA has been extensively studied for its anti­inflammatory effects, which have shown significant pharmacological properties and can be applied clinically. Thus, it may hold promise as an effective drug for the treatment of AD. The present review elucidated the inflammatory signaling pathways of pharmaceuticals that have been investigated for their therapeutic efficacy in AD and elucidates their underlying mechanisms. This underscores the auspicious potential of pharmaceuticals in ameliorating AD by impeding neuroinflammation.


Asunto(s)
Enfermedad de Alzheimer , Productos Biológicos , Humanos , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Enfermedades Neuroinflamatorias , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Preparaciones Farmacéuticas
16.
Artículo en Inglés | MEDLINE | ID: mdl-37842894

RESUMEN

Atherosclerosis is characterized by chronic inflammation of the arterial wall. However, the exact mechanism underlying atherosclerosis-related inflammation has not been fully elucidated. To gain insight into the mechanisms underlying the inflammatory process that leads to atherosclerosis, there is need to identify novel molecular markers. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-protein-coding RNAs (lncRNAs) and circular RNAs (circRNAs) have gained prominence in recent years. LncRNAs/circRNAs act as competing endogenous RNAs (ceRNAs) that bind to miRNAs via microRNA response elements (MREs), thereby inhibiting the silencing of miRNA target mRNAs. Inflammatory mediators and inflammatory signaling pathways are closely regulated by ceRNA regulatory networks in atherosclerosis. In this review, we discuss the role of LncRNA/CircRNA-miRNA-mRNA axis in atherosclerotic inflammation and how it can be targeted for early clinical detection and treatment.

17.
Food Sci Nutr ; 11(9): 4926-4947, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37701204

RESUMEN

Apples and their products exemplify the recently reemphasized link between dietary fruit intake and the alleviation of human disease. Their consumption does indeed improve human health due to their high phytochemical content. To identify potentially relevant articles from clinical trials, some epidemiological studies and meta-analyses, and in vitro and in vivo studies (cell cultures and animal models), PubMed was searched from January 1, 2012, to May 15, 2022. This review summarized the potential effects of apple and apple products (juices, puree, pomace, dried apples, extracts rich in apple bioactives and single apple bioactives) on health. Apples and apple products have protective effects against cardiovascular diseases, cancer, as well as mild cognitive impairment and promote hair growth, healing of burn wounds, improve the oral environment, prevent niacin-induced skin flushing, promote the relief of UV-induced skin pigmentation, and improve the symptoms of atopic dermatitis as well as cedar hay fever among others. These effects are associated with various mechanisms, such as vascular endothelial protection, blood lipids lowering, anti-inflammatory, antioxidant, antiapoptotic, anti-invasion, and antimetastatic effects. Meanwhile, it has provided an important reference for the application and development of medicine, nutrition, and other fields.

19.
Biomed Pharmacother ; 167: 115475, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37722190

RESUMEN

The vascular endothelium is vital in maintaining cardiovascular health by regulating vascular permeability and tone, preventing thrombosis, and controlling vascular inflammation. However, when oxidative stress triggers endothelial dysfunction, it can lead to chronic cardiovascular diseases (CVDs). This happens due to oxidative stress-induced mitochondrial dysfunction, inflammatory responses, and reduced levels of nitric oxide. These factors cause damage to endothelial cells, leading to the acceleration of CVD progression. Melatonin, a natural antioxidant, has been shown to inhibit oxidative stress and stabilize endothelial function, providing cardiovascular protection. The clinical application of melatonin in the prevention and treatment of CVDs has received widespread attention. In this review, based on bibliometric studies, we first discussed the relationship between oxidative stress-induced endothelial dysfunction and CVDs, then summarized the role of melatonin in the treatment of atherosclerosis, hypertension, myocardial ischemia-reperfusion injury, and other CVDs. Finally, the potential clinical use of melatonin in the treatment of these diseases is discussed.

20.
Lipids Health Dis ; 22(1): 140, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37653500

RESUMEN

BACKGROUND: Hyperlipidemia is closely associated with dietary patterns and inflammation. However, the relationship between hyperlipidemia and the inflammatory potential of diets remains unexplored. The research was conducted to examine the relationship between hyperlipidemia and dietary inflammatory index (DII). METHODS: The data utilized in the research were acquired from the National Health and Nutrition Examination Survey (NHANES) from 2005 to 2018. The information on dietary intake was gathered by conducting 24-h dietary recall interviews. Restricted cubic spline (RCS) and Survey-weighted logistic regression were utilized to determine the association between DII and hyperlipidemia. Furthermore, stratification analysis was carried out. RESULTS: This study included 8982 individuals with and 3458 without hyperlipidemia. Participants with hyperlipidemia exhibited higher DII scores than those without hyperlipidemia. Following adjustment for gender, age, race, education level, marital status, poverty, drinking status, diabetes, hypertension, smoking status, body mass index (BMI), chronic kidney disease (CKD), cardiovascular disease (CVD), and hemoglobin (Hb), the association between the prevalence of hyperlipidemia and DII remained significant. The RCS data demonstrated that the hyperlipidemia prevalence did not exhibit an increase until the DII score was approximately 2.78. Stratification analysis revealed that the association between DII and hyperlipidemia persisted in all subgroups. CONCLUSIONS: DII was associated with hyperlipidemia, and the threshold DII score for the risk of hyperlipidemia was 2.78.


Asunto(s)
Hiperlipidemias , Humanos , Encuestas Nutricionales , Estudios Transversales , Hiperlipidemias/epidemiología , Dieta/efectos adversos , Índice de Masa Corporal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA