Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Cell Physiol ; 62(1): 111-124, 2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33237274

RESUMEN

Ectopic expression of FOREVER YOUNG FLOWER (FYF) delays floral senescence and abscission in transgenic Arabidopsis. To analyze the FYF function in Phalaenopsis orchids, two FYF-like genes (PaFYF1/2) were identified. PaFYF1/2 were highly expressed in young Phalaenopsis flowers, and their expression decreased significantly afterward until flower senescence. This pattern was strongly correlated with the process of flower senescence and revealed that PaFYF1/2 function to suppress senescence/abscission during early flower development. Interestingly, in flowers, PaFYF1 was consistently expressed less in petals than in lips/sepals, whereas PaFYF2 was expressed relatively evenly in all flower organs. This difference suggests a regulatory modification of the functions of PaFYF1 and PaFYF2 during Phalaenopsis flower evolution. Delayed flower senescence and abscission, which were unaffected by ethylene treatment, were observed in 35S::PaFYF1/2 and 35S::PaFYF1/2 + SRDX transgenic Arabidopsis plants due to the downregulation of the ethylene signaling and abscission-associated genes EDF1-4, IDA and BOP1/2. These results suggest a possible repressor role for Phalaenopsis PaFYF1/2 in controlling floral senescence/abscission by suppressing ethylene signaling and abscission-associated genes. To further validate the function of PaFYF1/2, PaFYF1/2-VIGS (virus-induced gene silencing) Phalaenopsis were generated and analyzed. Promotion of senescence and abscission was observed in PaFYF1/2-VIGS Phalaenopsis flowers by the upregulation of PeEDF1/2, PeSAG39 and PeBOP1/2 expression, the early occurrence of greening according to their increased chlorophyll content and the reduction in water content in flower organs. Our results support that PaFYF1/2 function as transcriptional repressors to prohibit flower senescence and abscission in Phalaenopsis.


Asunto(s)
Flores/crecimiento & desarrollo , Genes de Plantas/fisiología , Orchidaceae/crecimiento & desarrollo , Envejecimiento/genética , Animales , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Genes de Plantas/genética , Orchidaceae/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Plantas Modificadas Genéticamente , Alineación de Secuencia
2.
Exp Ther Med ; 14(1): 260-266, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28672923

RESUMEN

Intestinal ischemia/reperfusion (I/R) injury is associated with a high morbidity and mortality. Vasopressin is administered to critically ill patients with potential intestinal I/R. However, the impacts of vasopressin on intestinal epithelia under ischemic/anoxic conditions remain unclear. The aim of the present study was to evaluate the effects of terlipressin, a highly selective vasopressin V1 receptor agonist, on oxygen and glucose deprivation/re-oxygenation (OGD/R)-induced damage in intestinal epithelial cells (IEC-6). IEC-6 cells were subjected to OGD for 4 h, followed by 4 h re-oxygenation. Terlipressin was incubated with cells for 4 h following OGD. Following OGD/R, IEC-6 cell viability, proliferation and apoptosis, as well as cell cycle dynamics, were assessed and the levels of tumor necrosis factor (TNF)-α and 15-F2t-isoprostane in the culture medium were measured. In addition, wortmannin, a specific phosphatidylinositol 3-kinase (PI3K) inhibitor, was administrated to investigate the mechanism of terlipressin action. The results demonstrated that IEC-6 cell viability and proliferation decreased, and cell apoptosis increased, following OGD/R. However, IEC-6 cell cycle dynamics did not significantly change 4 h after OGD. Incubation with 25 nM terlipressin significantly improved cell viability, proliferation and apoptosis. Furthermore, terlipressin inhibited the secretion of TNF-α and 15-F2t-isoprostane from IEC-6 cells following OGD/R. The aforementioned effects of terlipressin were completely abolished following the application of 2 µM wortmannin. Therefore, the current study demonstrated that terlipressin administration following OGD attenuates OGD/R-induced cell damage via the PI3K signaling pathway. These results may help physicians to better understand and more effectively use terlipressin in a clinical setting.

3.
Life Sci ; 102(2): 139-44, 2014 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-24641951

RESUMEN

AIMS: This study was aimed to exploit the role of heme oxygenase Hmx1 and the potential miRNA mechanisms in the kidney injuries induced by urinary tract infection by Candida species/Candidemia. MAIN METHODS: We employed a mouse model of systemic Candidiasis by injection of the Candida albicans strain SC5314 into C57BL/6 mice. Kidney injuries were assessed by measuring serum cystatin C (CysC), serum ß2-microglobulin (ß2-MG) and blood urea nitrogen (BUN). Validation of miRNA target gene was conducted by luciferase reporter gene assay, Western blot analysis and real-time RT-PCR. KEY FINDINGS: We showed here that Candidemia caused significant downregulation of microRNAs miR-204 and miR-211. In sharp contrast, Hmx1 expression was remarkably upregulated, particularly at the protein level. Computational analysis predicted Hmx1 as a target gene for both miR-204 and miR-211 that share the same seed site sequence. We then experimentally validated the targeting relationship between miR-204/miR-211 and Hmx1, which explains the reciprocal changes of expression of miR-204/miR-211 and Hmx1 in Candidemia. Administration of miR-204/miR-211 mimics substantially downregulated Hmx1 and mitigated the severity of the kidney injuries induced by Candidemia, as reflected by improved renal glomerular filtration rate (GFR) determined by serum cystatin C (CysC), serum ß2-microglobulin (ß2-MG) and blood urea nitrogen (BUN). Knockdown of miR-204/miR-211 worsened while forced expression of miR-204/miR-211 ameliorated kidney injuries in mice with systemic Candidiasis. SIGNIFICANCE: Our findings indicate that miR-204/miR-211 downregulation accounts at least partially for the Hmx1 upregulation and the miR-204/miR-211-Hmx1 signaling axis may contribute to immune-suppression in the host thereby the Candidemia-induced kidney dysfunction.


Asunto(s)
Lesión Renal Aguda/genética , Candidemia/genética , Regulación hacia Abajo/genética , Proteínas de Homeodominio/genética , MicroARNs/antagonistas & inhibidores , Factores de Transcripción/genética , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Animales , Candidemia/metabolismo , Candidemia/patología , Células HEK293 , Proteínas de Homeodominio/biosíntesis , Humanos , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Transducción de Señal/genética , Factores de Transcripción/biosíntesis , Infecciones Urinarias/genética , Infecciones Urinarias/metabolismo , Infecciones Urinarias/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...