Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biology (Basel) ; 13(7)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39056667

RESUMEN

BACKGROUND: The high incidence of metabolic syndrome in the elderly poses a significant challenge to the healthcare system, emphasizing the need for interventions tailored to geriatric patients. Given the limited focus on females in previous studies, this research aimed to evaluate the effects of dietary curcumin on obesity and NAFLD outcomes in naturally aged (18-month-old) female mice. METHODS: Female C57BL/6 mice aged 18 months were fed a normal chow diet (NCD) and a HFHSD, with or without curcumin (0.4% w/w), for an 8-week period. Parameters included food intake, body weight, insulin tolerance test (ITT), glucose tolerance test (GTT), percentage fat mass, hepatic triglyceride, and cholesterol levels, and a histological examination for NAFLD detection, qPCR, and immunoblotting analyses were performed. RESULTS: The cumulative body weight gain after 8 weeks in the aged female mice supplemented with curcumin and fed an HFHSD was significantly lower (10.84 ± 1.09 g) compared to those fed a HFHSD alone (15.28 ± 1.26 g). Curcumin supplementation also resulted in reduced total body fat (HFHSD group 50.83 ± 1.71% vs. HFHSD+CUR 41.46 ± 3.21%), decreased epidydimal fat mass (HFHSD: 3.79 ± 0.29 g vs. HFHSD+CUR: 2.66 ± 0.30 g), and repaired adipogenic signaling in the white adipose tissue. Furthermore, curcumin lowered triglyceride and cholesterol deposition in the liver, preventing hepatic steatosis and improving hepatic insulin sensitivity. CONCLUSIONS: Curcumin demonstrates the ability to ameliorate the deleterious effects of HFHSD in aged female mice by reducing body fat composition, modulating adipogenic signaling in the white adipose tissue, and improving insulin homeostasis and non-alcoholic fatty deposition in the liver.

2.
Nutrients ; 15(15)2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37571230

RESUMEN

Chlorella vulgaris (C. vulgaris) is unicellular green algae consumed worldwide as a functional food. The immune stimulatory function of C. vulgaris is known; however, no study has elucidated its immune regulatory potential and associated microbiome modulation. In the current study, we aimed to validate the immune regulatory role of C. vulgaris mediated through two mechanisms. Initially, we assessed its ability to promote the expansion of the regulatory T cell (Treg) population. Subsequently, we investigated its impact on gut microbiota composition and associated metabolites. The supplementation of C. vulgaris altered the gut microbiota composition, accompanied by increased short-chain fatty acid (SCFAs) production in mice at homeostasis. We later used C. vulgaris in the treatment of a DSS-induced colitis model. C. vulgaris intervention alleviated the pathological symptom of colitis in mice, with a corresponding increase in Treg levels. As C. vulgaris is a safe and widely used food supplement, it can be a feasible strategy to instigate cross-talk between the host immune system and the intestinal flora for the effective management of inflammatory bowel disease (IBD).


Asunto(s)
Chlorella vulgaris , Colitis , Microbioma Gastrointestinal , Microbiota , Animales , Ratones , Linfocitos T Reguladores , Colitis/inducido químicamente , Colitis/terapia , Sulfato de Dextran/efectos adversos , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Colon/metabolismo
3.
J Sci Food Agric ; 100(7): 2938-2945, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32031246

RESUMEN

BACKGROUND: Gut microbiota are major contributors to host metabolism and are considered as potential targets of novel therapeutics. Microalgae have a strong potential for use as prebiotics because they are a rich source of proteins, fatty acids, fiber, and minerals for nutritional supplementation in humans. Nevertheless, there has been insufficient research into the effect of microalgae on gut microbiota. To investigate the effects of three edible microalgae (Chlorella vulgaris, Chlorella protothecoides, and Schizochytrium sp.) on gut microbiota, simulated digestion and colonic fermentation were examined. RESULTS: Following in vitro digestion, the microalgae displayed different levels of bioaccessibility and the nutrient analysis revealed that unabsorbed nutrients during the digestion process could be used for colonic fermentation. Following colonic fermentation, the control, inulin, and microalgae groups displayed different metabolite tendencies when investigated with nuclear magnetic resonance (NMR) spectroscopic analysis. In particular, microalgae supplementation increased the proportion of propionate in the colonic culture (control: 19.14%, Inulin: 18.38%, C. vulgaris: 25.80%, C. protothecoides: 25.46%, and Schizochytrium sp.: 25.56%). Microbial profiling analysis using 16S rRNA gene sequencing also disclosed that the relative abundance of Bacteroides (control: 1.91%, inulin: 2.61%, C. vulgaris: 14.77%, C. protothecoides: 11.17%, and Schizochytrium sp.: 5.51%) and Dialister (control: 0.08%, inulin: 2.06%, C. vulgaris: 6.79%, C. protothecoides: 4.45%, and Schizochytrium sp.: 4.48%), involved in propionate metabolism increased more than in the inulin group. CONCLUSION: Our findings suggest the potential use of microalgae as a functional food to increase propionate generation because propionate has been reported to be effective in weight loss and the inhibition of pathogen infection. © 2020 Society of Chemical Industry.


Asunto(s)
Bacterias/metabolismo , Microbioma Gastrointestinal/fisiología , Microalgas , Prebióticos , Adulto , Bacterias/clasificación , Bacterias/genética , Chlorella , Chlorella vulgaris , Alimentos Funcionales , Humanos , Inulina/metabolismo , ARN Ribosómico 16S , Estramenopilos
4.
Food Chem ; 263: 216-224, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-29784310

RESUMEN

We investigated the impact of a fermented milk product on gut microbiota and their metabolism in 3 different conditions of the colon with a systemic viewpoint. An in vitro semi-continuous anaerobic cultivation was used to assess the colon compartment-specific influence of fermented milk, followed by a multiomics approach combining 16S rDNA amplicon sequencing and nuclear magnetic resonance (NMR) spectroscopy. The microbiome profiling and metabolomic features were significantly different across three colon compartments and after fermented milk treatment. Integrative correlation analysis indicated that the alteration of butyrate-producing microbiota (Veillonella, Roseburia, Lachnospira, and Coprococcus) and some primary metabolites (butyrate, ethanol, lactate, and isobutyrate) in the treatment group had a strong association with the fermented milk microorganisms. Our findings suggested that fermented milk treatment significantly affected microbial population in an in vitro cultivation system as well as the colonic metabolome in different ways in each of colon compartment.


Asunto(s)
Colon/microbiología , Productos Lácteos Cultivados , Microbioma Gastrointestinal/fisiología , Anaerobiosis , Butiratos/metabolismo , Colon/metabolismo , Técnicas de Cultivo/métodos , Productos Lácteos Cultivados/microbiología , ADN Ribosómico , Humanos , Espectroscopía de Resonancia Magnética , Masculino , Metaboloma , Metabolómica/métodos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...