Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1343928, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38390293

RESUMEN

Root architecture is an important agronomic trait that plays an essential role in water uptake, soil compactions, nutrient recycling, plant-microbe interactions, and hormone-mediated signaling pathways. Recently, significant advancements have been made in understanding how the complex interactions of phytohormones regulate the dynamic organization of root architecture in crops. Moreover, phytohormones, particularly auxin, act as internal regulators of root development in soil, starting from the early organogenesis to the formation of root hair (RH) through diverse signaling mechanisms. However, a considerable gap remains in understanding the hormonal cross-talk during various developmental stages of roots. This review examines the dynamic aspects of phytohormone signaling, cross-talk mechanisms, and the activation of transcription factors (TFs) throughout various developmental stages of the root life cycle. Understanding these developmental processes, together with hormonal signaling and molecular engineering in crops, can improve our knowledge of root development under various environmental conditions.

2.
Plants (Basel) ; 12(19)2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37836246

RESUMEN

Zeaxanthin is a naturally occurring xanthophyll carotenoid obtained from diet sources. Particularly, sweet corn is a major source of dietary zeaxanthin. To investigate the genetic basis of zeaxanthin content regulation in sweet corn, a recombinant inbred line (RIL) population comprising 191 families was constructed using two inbred lines (K44 and F22) with contrasting zeaxanthin content in the grain. The zeaxanthin content in the dry grains of this population grown at different locations was determined using high performance liquid chromatography (HPLC). Subsequently, 175 polymorphic simple sequence repeat (SSR) markers were used to construct a linkage map with a total length of 4322.37 cM and with an average distance of 24.4 cM. A total of eight QTLs located on chromosomes 4, 5, 7, 9, and 10 were detected. The QTLs located in umc1632-umc1401 on chromosome 7 were detected in different environments and explained 11.28-20.25% of the phenotypic variation, implying it is the main QTL controlling zeaxanthin content in the dry grains of sweet corn. Collectively, the present study provides a genetic map and theoretical guidance for the cultivation of sweet corn varieties with a high zeaxanthin content.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...