Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Medicine (Baltimore) ; 102(7): e32771, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36800575

RESUMEN

BACKGROUND: The presence of breast cancer in the brain, also known as brain metastasis (BMS), is the primary reason for a bad prognosis in cases of breast cancer. Breast cancer is the most prevalent malignant tumor seen in women in developing nations. At present, there is no effective method to inhibit brain metastasis of breast cancer. Therefore, it is necessary to conduct a systematic study on BMS of breast cancer, which will not provide ideas and sites for follow-up studies on the treatment and inhibition of BMS. METHODS: In this study, data set GSE43837 was screened from gene expression omnibus database, and then R language tool was used for differential analysis of its expression spectrum, The gene ontology functional enrichment and Kyoto encyclopedia of genes and genomes signal pathway enrichment analyses, as well as the interactive gene retrieval tool for hub-gene analysis, were performed. RESULTS: According to the findings, the primary genes linked to breast cancer brain metastases are those that involve interactions between cytokines and their respective receptors and between neuroactive ligands and their respective receptors. The majority of the gene ontology enrichment took place in the extracellular structural tissues, the extracellular matrix tissues, and the second message-mediated signaling. We were able to identify 8 genes that are linked to breast cancer spreading to the brain. The gene score for matrix metallopeptidase1 (MMP-1) was the highest among them, and the genes MMP10, tumor necrosis factor alpha-inducible protein 8, collagen type I alpha 2 chain, vascular cell adhesion molecule 1, and TNF superfamily member 11 were all connected to 1 another in an interaction way. CONCLUSIONS: There is a possibility that the 8 key genes that were identified in this research are connected to the progression of BMS in breast cancer. Among them, MMP1 is 1 that has the potential to have a role in the diagnosis and treatment of BMS in breast cancer.


Asunto(s)
Neoplasias Encefálicas , Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/patología , Perfilación de la Expresión Génica/métodos , Detección Precoz del Cáncer , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/secundario , Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica , Biología Computacional
2.
Oncol Rep ; 32(2): 635-40, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24926530

RESUMEN

Iodine-125 (125I) seed irradiation can be used as an important supplementary treatment for unresectable advanced gastric cancer. However, the radiobiological mechanism underlying brachytherapy remains unclear. Therefore, we investigated the influence of continuous and low-energy 125I irradiation on the cell cycle distribution, apoptosis, expression of NF-κB and VEGF and tumor growth in a human gastric cancer xenograft model. To create an animal model of gastric cancer, SGC-7901 cells were surgically implanted into mice. The 60 mice bearing SGC-7901 gastric cancer xenografts were randomly separated into 2 groups. Sham seeds (0 mCi) were implanted into the control group (n=30); 125I seeds (0.6 mCi) were implanted into the treatment group (n=30). At 28 days after irradiation, apoptosis was detected by flow cytometry. fluorescence micrograph detected intense VEGF and NF-κB immunofluorescence in the tumor samples, and changes in NF-κB and VEGF mRNA and protein expression were assessed by real-time PCR and western blot analysis, respectively. The tumor volume and weight were measured 0-28 days after 125I seed implantation. 125I seed irradiation induced significant apoptosis and G2/M phase arrest. Reduction in the intensities of VEGF and NF-κB immunofluorescence in tumor vessels was observed after treatment. NF-κB and VEGF mRNA and protein expression levels were substantially lower in the implantation treatment group than in the control group. Consequently, 125I seed implantation inhibited cancer growth and reduced cancer volume. The present study revealed that 125I seed irradiation significantly induced apoptosis and cell cycle arrest in the human gastric cancer xenografts. 125I-induced changes in NF-κB and VEGF expression are suggested as potential mechanisms underlying effective brachytherapy.


Asunto(s)
Braquiterapia/métodos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Neoplasias Gástricas/radioterapia , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Apoptosis/efectos de la radiación , Ciclo Celular/efectos de la radiación , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Humanos , Ratones , Neoplasias Gástricas/patología , Ensayos Antitumor por Modelo de Xenoinjerto , Quinasa de Factor Nuclear kappa B
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...