Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
1.
J Ethnopharmacol ; 334: 118587, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39025160

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: jinkui Shenqi Pill (JSP) is a classic traditional Chinese medicine used to treat "Kidney Yang Deficiency" disease. Previous studies indicate a protective effect of JSP on apoptosis in mouse neurons. AIM OF THE STUDY: This research, combining network pharmacology with in vivo experiments, explores the mechanism of JSP in preventing neural tube defects (NTDs) in mice. MATERIALS AND METHODS: Network pharmacology analyzed JSP components and targets, identifying common genes with NTDs and exploring potential pathways. Molecular docking assessed interactions between key JSP components and pathway proteins. In an all-trans retinoic acid (atRA)-induced NTDs mouse model, histopathological changes were observed using HE staining, neuronal apoptosis was detected using TUNEL, and Western Blot assessed changes in the PI3K/AKT signaling pathway and apoptosis-related proteins. RESULTS: Different concentrations of JSP led to varying degrees of reduction in the occurrence of neural tube defects in mouse embryos, with the highest dose showing the most significant decrease. Furthermore, it showed a better reduction in NTDs rates compared to folic acid (FA). Network pharmacology constructed a Drug-Active Ingredient-Gene Target network, suggesting key active ingredients such as Quercetin, Wogonin, Beta-Sitosterol, Kaempferol, and Stigmasterol, possibly acting on the PI3K/Akt signaling pathway. Molecular docking confirmed stable binding structures. Western Blot analysis demonstrated increased expression of p-PI3K, p-Akt, p-Akt1, p-Akt2, p-Akt3, downregulation of cleaved caspase-3 and Bax, and upregulation of Bcl-2, indicating prevention of NTDs through anti-apoptotic effects. CONCLUSION: We have identified an effective dosage of JSP for preventing NTDs, revealing its potential by activating the PI3K/Akt signaling pathway and inhibiting cell apoptosis in atRA-induced mouse embryonic NTDs.


Asunto(s)
Apoptosis , Medicamentos Herbarios Chinos , Simulación del Acoplamiento Molecular , Farmacología en Red , Defectos del Tubo Neural , Animales , Defectos del Tubo Neural/prevención & control , Defectos del Tubo Neural/inducido químicamente , Medicamentos Herbarios Chinos/farmacología , Ratones , Apoptosis/efectos de los fármacos , Femenino , Transducción de Señal/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Tretinoina/farmacología , Modelos Animales de Enfermedad , Embarazo
2.
J Ethnopharmacol ; 329: 118127, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38583728

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Shugan Xiaozhi (SGXZ) decoction is a traditional Chinese medicine used for treating nonalcoholic steatohepatitis (NASH). It has been used clinically for over 20 years and proved to be effective; however, the molecular mechanism underlying the effects of SGXZ decoction remains unclear. AIM OF THE STUDY: We analyzed the chemical components, core targets, and molecular mechanisms of SGXZ decoction to improve NASH through network pharmacology and in vivo experiments. MATERIALS AND METHODS: The chemical components, core targets, and related signaling pathways of SGXZ decoction intervention in NASH were predicted using network pharmacology. Molecular docking was performed to verify chemical components and their core targets. The results were validated in the NASH model treated with SGXZ decoction. Mouse liver function was assessed by measuring ALT and AST levels. TC and TG levels were determined to evaluate lipid metabolism, and lipid deposition was assessed via oil red O staining. Mouse liver damage was determined via microscopy following hematoxylin and eosin staining. Liver fibrosis was assessed via Masson staining. Western blot (WB) and immunohistochemical (IHC) analyses were performed to detect inflammation and the expression of apoptosis-related proteins, including IL-1ß, IL-6, IL-18, TNF-α, MCP1, p53, FAS, Caspase-8, Caspase-3, Caspase-9, Bax, Bid, Cytochrome c, Bcl-2, and Bcl-XL. In addition, WB and IHC were used to assess protein expression associated with the TLR4/MyD88/NF-κB pathway. RESULTS: Quercetin, luteolin, kaempferol, naringenin, and nobiletin in SGXZ decoction were effective chemical components in improving NASH, and TNF-α, IL-6, and IL-1ß were the major core targets. Molecular docking indicated that these chemical components and major core targets might interact. KEGG pathway analysis showed that the pathways affected by SGXZ decoction, primarily including apoptosis and TLR4/NF-κB signaling pathways, interfere with NASH. In vivo experiments indicated that SGXZ decoction considerably ameliorated liver damage, fibrosis, and lipid metabolism disorder in MCD-induced NASH mouse models. In addition, WB and IHC verified the underlying molecular mechanisms of SGXZ decoction as predicted via network pharmacology. SGXZ decoction inhibited the activation of apoptosis-related pathways in MCD-induced NASH mice. Moreover, SGXZ decoction suppressed the activation of TLR4/MyD88/NF-κB pathway in MCD-induced NASH mice. CONCLUSION: SGXZ decoction can treat NASH through multiple targets and pathways. These findings provide new insights into the effective treatment of NASH using SGXZ decoction.


Asunto(s)
Apoptosis , Medicamentos Herbarios Chinos , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Enfermedad del Hígado Graso no Alcohólico , Transducción de Señal , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Masculino , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Ratones , Transducción de Señal/efectos de los fármacos , Deficiencia de Colina/complicaciones , Inflamación/tratamiento farmacológico , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Modelos Animales de Enfermedad , Farmacología en Red , Antiinflamatorios/farmacología , Metabolismo de los Lípidos/efectos de los fármacos
3.
Cancer Med ; 13(7): e7129, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38618967

RESUMEN

BACKGROUND: The RNA-binding motif single-stranded interacting protein 3 (RBMS3) is a constituent of the RNA-binding motif (RBM) protein family, which assumes a pivotal role in governing cellular biogenesis processes such as the cell cycle and apoptosis. Despite an abundance of studies elucidating RBMS3's divergent roles in the genesis and advancement of various tumors, its involvement in colon cancer remains enigmatic. METHODS: The present investigation employed data analysis from TCGA and GTEx to unveil that RBMS3 expression demonstrated a diminished presence in colon cancer tissues when juxtaposed with normal colon tissues. The effect of RBMS3 and LIM zinc finger domain 1 (LIMS1) on colon cancer was substantiated via animal models and cellular experiments. The connection between RBMS3 and LIM zinc finger domain 1 (LIMS1) was verified by molecular biology methods. RESULTS: The study conclusively ascertained that augmenting RBMS3 expression quells the proliferation, migration, and invasion of colon cancer cells. Furthermore, the inquiry unveiled a plausible mechanism through which RBMS3 impacts the expression of LIMS1 by modulating its mRNA stability. The investigation ascertained that RBMS3 inhibits the progression of colon cancer by regulating LIMS1. The inhibitory function of LIMS1 and RBMS3 is closely intertwined in colon cancer, with knocking down LIMS1 being able to rescue the inhibitory effect of RBMS3 overexpression on the functionality of colon cancer cell CONCLUSIONS: The discernments delineate RBMS3 as a novel suppressor of cancer via LIMS1, thereby bestowing fresh therapeutic possibilities and illuminating the intricacies of colon cancer.


Asunto(s)
Neoplasias del Colon , Animales , Apoptosis , Ciclo Celular/genética , Neoplasias del Colon/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Humanos
4.
BMC Complement Med Ther ; 24(1): 101, 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38402163

RESUMEN

BACKGROUND: Acute kidney injury (AKI), characterized by necroptosis and activation of MAPK pathway, causes sudden declines in renal function. To date, efficacious treatments are lacking. JianPiYiShen Formula (JPYSF) has a protective effect on the kidneys. The aim of this study is to explore the mechanism of JPYSF in cisplatin-induced AKI. METHODS: Male C57/BL6J mice were divided into control group, cisplatin group and cisplatin + JPYSF group. Before establishing the model, the cisplatin + JPYSF group was administered JPYSF (18.35 g/kg/day) by gavage for 5 consecutive days. A single intraperitoneal injection of cisplatin (20 mg/kg) was used to establish AKI model. Measurement of renal function and H&E staining were performed to assess renal damage. WB, PCR, TUNEL staining and immunohistochemistry were used to detect related indicators of mitochondrial function, oxidative stress, necroptosis, inflammation and MAPK pathway. And one-way analysis of variance was used to compare group differences. RESULTS: Compared with the cisplatin group, JPYSF can attenuate AKI, reflected by the decrease in Scr and BUN levels, the improvement of renal tubular injury, and the downregulation of NGAL and KIM1. Cisplatin can induce mitochondrial dysfunction and oxidative stress, triggering necroptosis. In this study, JPYSF improved mitochondrial dysfunction to enhance oxidative stress, as manifested by upregulation of OPA1, PGC-1α, SOD and CAT, and downregulation of DRP1 and MFF. Then JPYSF showed a significant protective effect in necroptosis, as embodied by reduced number of TUNEL-positive cells, decreased the gene expression of RIPK3 and MLKL, as well as downregulation the proteins expression of P-RIPK1, P-RIPK3, and P-MLKL. Moreover, necroptosis can aggravate inflammation. JPYSF ameliorated inflammation by improving inflammatory and anti-inflammatory indexes, including downregulation of TNF-α, IL-6, MCP-1 and LY6G, and upregulation of IL-10. In addition, JPYSF also inhibited MAPK pathway to improve necroptosis by decreasing the expression of P-JNK and P-ERK. CONCLUSION: Our data showed that JPYSF prevents cisplatin-induced AKI by improving necroptosis through MAPK pathway, which is related to the improvement of mitochondrial dysfunction, oxidative stress, and inflammation.


Asunto(s)
Lesión Renal Aguda , Enfermedades Mitocondriales , Masculino , Ratones , Animales , Cisplatino/efectos adversos , Necroptosis , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/tratamiento farmacológico , Inflamación
5.
ACS Chem Neurosci ; 15(3): 517-526, 2024 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-38175916

RESUMEN

KRM-II-81 (1) is an imidazodiazepine GABAA receptor (GABAAR) potentiator with broad antiseizure efficacy and a low sedative burden. A brominated analogue, DS-II-73 (5), was synthesized and pharmacologically characterized as a potential backup compound as KRM-II-81 moves forward into development. The synthesis from 2-amino-5-bromophenyl)(pyridin-2yl)methanone (6) was processed in five steps with an overall yield of 38% and without the need for a palladium catalyst. GABAAR binding occurred with a Ki of 150 nM, and only 3 of 41 screened binding sites produced inhibition ≥50% at 10 µM, and the potency to induce cytotoxicity was ≥240 mM. DS-II-73 was selective for α2/3/5- over that of α1-containing GABAARs. Oral exposure of plasma and brain of rats was more than sufficient to functionally impact GABAARs. Tonic convulsions in mice and lethality induced by pentylenetetrazol were suppressed by DS-II-73 after oral administration and latencies to clonic and tonic seizures were prolonged. Cortical slice preparations from a patient with pharmacoresistant epilepsy (mesial temporal lobe) showed decreases in the frequency of local field potentials by DS-II-73. As with KRM-II-81, the motor-impairing effects of DS-II-73 were low compared to diazepam. Molecular docking studies of DS-II-73 with the α1ß3γ2L-configured GABAAR showed low interaction with α1His102 that is suggested as a potential molecular mechanism for its low sedative side effects. These findings support the viability of DS-II-73 as a backup molecule for its ethynyl analogue, KRM-II-81, with the human tissue data providing translational credibility.


Asunto(s)
Epilepsia del Lóbulo Temporal , Ratones , Humanos , Ratas , Animales , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Receptores de GABA-A/metabolismo , Simulación del Acoplamiento Molecular , Convulsiones/tratamiento farmacológico , Oxazoles/farmacología , Encéfalo/metabolismo , Hipnóticos y Sedantes/uso terapéutico , Redes Neurales de la Computación , Anticonvulsivantes/farmacología
6.
Heliyon ; 10(1): e23752, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38223703

RESUMEN

A clinical case of a 19-year-old male patient with pharmacoresistant seizures occurring following parieto-occipital tumor-resection at age 6 is described. Seizure surgery work-up included prolonged video EEG monitoring and head CT without contrast. Seizure focus was localized to the left temporal lobe, and we felt that the patient was an excellent candidate for seizure surgery. The patient underwent a left frontotemporal craniotomy for removal of the seizure focus with intraoperative electrocorticography (ECoG) conducted pre and post resection. ECoG recordings pre- and post-resection confirmed resolution of seizure generation. Imaging obtained immediately postoperatively showed complete resection of the residual tumor with no evidence of recurrence in follow-ups. A year after the surgery the patient is seizure-free but remains on seizure medication. With the patient's consent the excised epileptogenic tissue was used for ex-vivo research studies. The microelectrode recordings confirmed epileptiform activity in the excised tissue incubated in excitatory artificial cerebrospinal fluid. The epileptiform activity in the epileptogenic tissue was suppressed by addition of KRM-II-81, a novel α2/3 subtype preferring GABAA receptor (GABAAR) potentiator with previously demonstrated antiepileptic efficacy in multiple animal models of epilepsy and with reduced potential for CNS side-effects compared to classical benzodiazepine GABAAR potentiators. These findings support the proposition that KRM-II-81 might reduce seizure burden in pharmacoresistant patients.

7.
Drug Des Devel Ther ; 17: 3363-3383, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38024532

RESUMEN

Background: Acute kidney injury (AKI) is a common clinical condition resulting in a rapid decline in renal function, and requires improvement in effective preventive measures. Ferroptosis, a novel form of cell death, is closely related to AKI. Shenshuaifu granule (SSF) has been demonstrated to prevent AKI through suppressing inflammation and apoptosis. Objective: This study aimed to explore whether SSF can inhibit ferroptosis in AKI. Methods: Active ingredients in SSF were detected through HPLC-MS/MS, and their binding abilities with ferroptosis were evaluated by molecular docking. Then, male C57/BL/6J mice were randomly divided into control, cisplatin, and cisplatin+SSF groups. In the latter two groups, mice were intraperitoneally injected with 20 mg/kg of cisplatin. For five consecutive days prior to cisplatin injection, mice in the cisplatin+SSF group were gavaged with 5.2 g/kg of SSF per day.72 h after cisplatin injection, the mice were sacrificed. Serum creatinine (SCr) and blood urea nitrogen (BUN) were measured to evaluate renal function. H&E and PAS staining were used to observe pathological damage of kidney. Cell death was observed by TUNEL staining, and iron accumulation in kidneys of mice was detected by Prussian blue staining. Western blotting, immunohistochemistry, and immunofluorescence were used to investigate the presence of inflammation, oxidative stress, mitochondrial dysfunction, iron deposition, and lipid peroxidation in mouse kidneys. Results: Active ingredients in SSF had strong affinities with ferroptosis. SSF reduced SCr (p<0.01) and BUN (p<0.0001) levels, pathological damage (p<0.0001), dead cells in the tubular epithelium (p<0.0001) and iron deposition (p<0.01) in mice with cisplatin induced AKI. And SSF downregulated macrophage infiltration (p<0.01), the expressions of high mobility group box 1 (HMGB1, p<0.05) and interleukin (IL)-17 (p<0.05), upregulated superoxide dismutase (SOD) 1 and 2 (p<0.01), and catalase (CAT, p<0.05), and alleviated mitochondrial dysfunction (p<0.05). More importantly, SSF regulated iron transport and intracellular iron overload and reduced the expression of ferritin (p<0.05). Moreover, it downregulated the expressions of cyclo-oxygenase-2 (Cox-2, p<0.001), acid CoA ligase 4 (ACSL4, p<0.05), and solute carrier family 7, member 11 (SLC7A11, p<001), upregulated glutathione peroxidase 4 (GPX4, p<0.01) and p53 (p<0.01), and decreased 4-hydroxynonenal (4-HNE) level (p<0.001). Conclusion: SSF attenuates AKI by inhibiting ferroptosis mediated by p53/SLC7A11/GPX4 pathway.


Asunto(s)
Lesión Renal Aguda , Ferroptosis , Masculino , Animales , Ratones , Proteína p53 Supresora de Tumor , Cisplatino , Simulación del Acoplamiento Molecular , Espectrometría de Masas en Tándem , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/tratamiento farmacológico , Inflamación , Hierro
8.
Heliyon ; 9(10): e20621, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37842634

RESUMEN

Objective: Studies have shown that Wuzi Yanzong Pill (WYP) can be used to treat neurological diseases, but its mechanisms for multiple sclerosis (MS) remain unclear. This study aims to determine the effect of WYP on MS in an animal model of experimental autoimmune encephalomyelitis (EAE), and explore its mechanism. To provide theoretical basis for the clinical treatment of MS with WYP. Methods: C57BL/6 female mice were randomly divided into Blank control, EAE control, low dose WYP, medium dose WYP, and high dose WYP groups. One week before model generation, the mice were gavaged with saline (50 mL/kg/d) in Blank control and EAE control groups. The treatment groups was gavaged with different doses of WYP solution (4, 8, or 16 g/kg/d respectively) Clinical scores were recorded daily. Sample collection was conducted on the 14th and 28th days, respectively The expressions of IL-10, IL-17, IL-12, TNF-α and IFN-γ in spleen were detected by ELISA. The expressions of ROCKII, P-MYPT1, TLR4, NF-κB/p65, MCP-1, CCR2 in spleen, brain and spinal cord were detected by Western Blot. The types of macrophages and the contents of intracellular IL-10 and IL-12 were detected by Flow Cytometry. The contents of TNF-α and TLR4 mRNA in the spleen were detected by RT-PCR. Results: WYP treatment improved the clinical score of EAE mice in a significant dose-dependent manner, with the WYP high-dose group showed the most significant improvement in clinical score. Compared with the EAE control group, WYP high dose group had significantly lower levels of IL-17, IFN-γ, ROCKII, P-MYPT1, TLR4, NF-κB/p65, MCP-1, and CCR2 as well as TNF-α and TLR4 mRNA, but increased the number of M2 macrophages and IL-10. Conclusion: WYP treatment relieves clinical symptoms in EAE mice, which may be related to regulate inflammatory pathway and inhibiting expressions of inflammatory cytokines.

9.
Neurobiol Dis ; 184: 106233, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37468047

RESUMEN

Stroke is the most common cause of acquired epilepsy, but treatment for preventing the development of post-stroke epilepsy is still unavailable. Since stroke results in neuronal damage and death as well as initial loss of activity in the affected brain region, homeostatic plasticity may be trigged and contribute to an increase in network hyperexcitability that underlies epileptogenesis. Correspondingly, enhancing brain activity may inhibit hyperexcitability from enhanced homeostatic plasticity and prevent post-stroke epileptogenesis. To test these hypotheses, we first used in vivo two-photon and mesoscopic imaging of activity of cortical pyramidal neurons in Thy1-GCaMP6 transgenic mice to determine longitudinal changes in excitatory activity after a photothrombotic ischemic stroke. At 3-days post-stroke, there was a significant loss of neuronal activity in the peri-injury area as indicated by reductions in the frequency of calcium spikes and percentage of active neurons, which recovered to baseline level at day 7, supporting a homeostatic activity regulation of the surviving neurons in the peri-injury area. We further used optogenetic stimulation to specifically stimulate activity of pyramidal neurons in the peri-injury area of Thy-1 channelrhodopsin transgenic mice from day 5 to day 15 after stroke. Using pentylenetetrazole test to evaluate seizure susceptibility, we showed that stroke mice are more susceptible to Racine stage V seizures (time latency 54.3 ± 12.9 min) compared to sham mice (107.1 ± 13.6 min), but optogenetic stimulation reversed the increase in seizure susceptibility (114.0 ± 9.2 min) in mice with stroke. Similarly, administration of D-cycloserine, a partial N-methyl-d-aspartate (NMDA) receptor agonist that can mildly enhance neuronal activity without causing post-stroke seizure, from day 5 to day 15 after a stroke significantly reversed the increase in seizure susceptibility. The treatment also resulted in an increased survival of glutamic acid decarboxylase 67 (GAD67) positive interneurons and a reduced activation of glial fibrillary acidic protein (GFAP) positive reactive astrocytes. Thus, this study supports the involvement of homeostatic activity regulation in the development of post-stroke hyperexcitability and potential application of activity enhancement as a novel strategy to prevent post-stroke late-onset seizure and epilepsy through regulating cortical homeostatic plasticity.


Asunto(s)
Epilepsia , Accidente Cerebrovascular , Ratones , Animales , Optogenética/efectos adversos , Convulsiones/prevención & control , Convulsiones/complicaciones , Epilepsia/etiología , Accidente Cerebrovascular/complicaciones , Ratones Transgénicos
10.
Metab Brain Dis ; 38(7): 2211-2222, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37470879

RESUMEN

Parkinson disease (PD) is an age-related neurodegenerative disease, which is associated with the loss of dopaminergic neurons (DA neurons) in the substantia nigra pars compacta (SNpc), and neuroinflammation may lead to the occurrence of PD. Wuzi Yanzong Pill (WYP) has demonstrated neuroprotective and anti-inflammatory properties, but its molecular mechanism of action is still unclear. In this study, we used 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice and LPS-mediated BV2 microglia to explore WYP intervention, anti-inflammatory effect and molecular mechanism in vivo and in vitro. The results showed that oral administration of WYP in MPTP-induced PD mice for 2 weeks ameliorated abnormal motor dysfunction, attenuated the loss of TH + neurons in SNpc, protected dopaminergic neurons, and inhibited the activation of microglia in MPTP-induced PD mice and LPS-stimulated BV2 cell. Meanwhile, WYP intervention inhibited the expression of IL-6, TNF-α, Pro-IL-1ß, IL-1ß, Pro-IL-18, IL-18 and enhanced the expression of IL-10 in the SNpc of PD mice. Simultaneously, WYP intervention inhibited the expression of NLRP3 inflammasome, accompanied by the decrease of the TLR4/MyD88/NF-κB pathway. However, the exact target and interaction of WYP on NLRP3 inflammasome and TLR4/MyD88/NF-κB pathway still needs to be further investigated.


Asunto(s)
Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Enfermedad de Parkinson , Ratones , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Interleucina-18/metabolismo , Interleucina-18/farmacología , Interleucina-18/uso terapéutico , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/metabolismo , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/uso terapéutico , Enfermedades Neuroinflamatorias , FN-kappa B/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Lipopolisacáridos/farmacología , Receptor Toll-Like 4/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 88 de Diferenciación Mieloide/farmacología , Enfermedad de Parkinson/metabolismo , Neuronas Dopaminérgicas , Microglía/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Antiinflamatorios/farmacología , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA