Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 889
Filtrar
1.
Front Immunol ; 15: 1400977, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39351226

RESUMEN

Pyroptosis is a form of programmed cell death that is crucial in the development of various diseases, including autoimmune diseases, atherosclerotic diseases, cancer, and pregnancy complications. In recent years, it has gained significant attention in national and international research due to its association with inflammatory immune overactivation and its involvement in pregnancy complications such as miscarriage and preeclampsia (PE). The mechanisms discussed include the canonical pyroptosis pathway of gasdermin activation and pore formation (caspase-1-dependent pyroptosis) and the non-canonical pyroptosis pathway (cysteoaspartic enzymes other than caspase-1). These pathways work on various cellular and factorial levels to influence normal pregnancy. This review aims to summarize and analyze the pyroptosis pathways associated with abnormal pregnancies and pregnancy complications. The objective is to enhance pregnancy outcomes by identifying various targets to prevent the onset of pyroptosis.


Asunto(s)
Complicaciones del Embarazo , Piroptosis , Humanos , Embarazo , Femenino , Complicaciones del Embarazo/inmunología , Complicaciones del Embarazo/metabolismo , Animales , Preeclampsia/inmunología , Preeclampsia/metabolismo , Transducción de Señal
2.
Nano Lett ; 24(37): 11349-11357, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39235045

RESUMEN

Sodium-ion batteries (SIBs) are considered one of the promising candidates for energy storage devices due to the low cost and low redox potential of sodium. However, their implementation is hindered by sluggish kinetics and rapid capacity decay caused by inferior conductivity, lattice deterioration, and volume changes of conversion-type anode materials. Herein, we report the design of a multicore-shell anode material based on manganese selenide (MnSe) nanoparticle encapsulated N-doped carbon (MnSe@NC) nanorods. Benefiting from the conductive multicore-shell structure, the MnSe@NC anodes displayed prominent rate capability (152.7 mA h g-1 at 5 A g-1) and long lifespan (132.7 mA h g-1 after 2000 cycles at 5 A g-1), verifying the essence of reasonable anode construction for high-performance SIBs. Systematic in situ microscopic and spectroscopic methods revealed a highly reversible conversion reaction mechanism of MnSe@NC. Our study proposes a promising route toward developing advanced transition metal selenide anodes and comprehending electrochemical reaction mechanisms toward high-performance SIBs.

3.
Adv Mater ; : e2409390, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39344856

RESUMEN

Electrochemical CO2 reduction reaction (CO2RR) offers a promising approach to close the carbon cycle and reduce reliance on fossil fuels. However, traditional decoupled CO2RR processes involve energy-intensive CO2 capture, conversion, and product separation, which increases operational costs. Here, we report the development of a bismuth-poly(ionic liquid) (Bi-PIL) hybrid catalyst that exhibits exceptional electrocatalytic performance for CO2 conversion to formate. The Bi-PIL catalyst achieves over 90% Faradaic efficiency for formate over a wide potential range, even at low 15% v/v CO2 concentrations typical of industrial flue gas. The biphenyl in PIL backbone affords hydrophobicity while maintaining high ionic conductivity, effectively mitigating the flooding issues. The PIL layer plays a crucial role as a CO2 concentrator and co-catalyst that accelerates the CO2RR kinetics. Furthermore, we demonstrate the potential of Bi-PIL catalysts in a solid-state electrolyte (SSE) electrolyzer for the continuous and direct production of pure formic acid solutions from flue gas. Techno-economic analysis suggests that this integrated process can produce formic acid at a significantly reduced cost compared to the traditional decoupled approaches. This work presents a promising strategy to overcome the challenges associated with low-concentration CO2 utilization and streamline the production of valuable liquid fuels and chemicals from CO2.

4.
ACS Appl Mater Interfaces ; 16(39): 52349-52357, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39295444

RESUMEN

Porous silicon (pSi) is considered a promising candidate for next-generation high-energy-density lithium-ion battery (LIB) anodes due to its ability to mitigate volume expansion stress. However, the lack of efficient preparation methods and severe side reactions due to its large specific surface area have hindered its commercial development. This study leverages the redox reaction between the Zintl compound Mg2Si and SiO2 at certain temperatures, using intermediate products as templates, and incorporates CVD deposition to create carbon-coated porous silicon (pSi@C) composite anode materials with excellent electrochemical performance. This approach enables pSi to achieve a high specific capacity, high rate performance, and long lifetime. Additionally, a prelithiation process effectively addresses the issue of low initial Coulombic efficiency (ICE) in pSi electrodes. In half-cell tests, the pSi@C electrode delivered a reversible specific capacity as high as 1500 mAh g-1 and outstanding rate performance (over 500 mAh g-1 at a high current density of 5 A g-1). After repeated charge/discharge 1000 times at 1 A g-1, the reversible capacity remained at 555 mAh g-1. Full-battery assembly with NCM811 cathodes also demonstrated the potential of pSi@C as a promising anode candidate. This work aims to expand the preparation methods for pSi materials and provide guidance for their application in high-energy-density LIBs.

5.
RSC Adv ; 14(38): 28160-28167, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39228755

RESUMEN

An amino-functionalized-dicarboxylic acid, 5-aminoisophthalic acid (H2aipa), was used as a versatile building block to synthesize a series of five novel coordination compounds under hydrothermal conditions and formulated as [Co(µ3-aipa)(2,2'-H2biim)] n (1), [Ni2(µ-aipa)2(2,2'-H2biim)2(H2O)4]·4H2O (2), {[Cd(µ3-aipa)(2,2'-H2biim)]·H2O} n (3), {[Ni(µ-aipa)(µ-bpb)]·0.5bpb·H2O} n (4), and {[Ni2(µ-aipa)(µ3-aipa)(µ-dpea)2(H2O)][Ni(µ-aipa)(µ-dpea)(H2O)]·8H2O} n (5). Three supporting ligands (2,2'-biimidazole (H2biim),1,4-bis(pyrid-4-yl)benzene (bpb), and 1,2-di(4-pyridyl)ethane (dpea)) were used in the synthesis. The structures of the studied products 1-5 vary significantly, ranging from a 0D dimer (2), 2D sheets (1, 3 and 4) to 3D + 2D interpenetrated frameworks (5). Furthermore, these compounds were evaluated as heterogeneous catalysts for the Knoevenagel reaction, achieving high product yields under optimized conditions. In addition, we also investigated various reaction parameters, substrate scope, and assessed the feasibility of catalyst recycling. This thorough investigation highlights the versatility of H2aipa as a dicarboxylate building block in the formation of functional coordination polymers.

6.
Chem Soc Rev ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39253782

RESUMEN

Aqueous zinc-ion batteries (AZIBs) have garnered significant attention in the realm of large-scale and sustainable energy storage, primarily owing to their high safety, low cost, and eco-friendliness. Aqueous electrolytes, serving as an indispensable constituent, exert a direct influence on the electrochemical performance and longevity of AZIBs. Nonetheless, conventional aqueous electrolytes often encounter formidable challenges in AZIB applications, such as the limited electrochemical stability window and the zinc dendrite growth. In response to these hurdles, a series of advanced aqueous electrolytes have been proposed, such as "water-in-salt" electrolytes, aqueous eutectic electrolytes, molecular crowding electrolytes, and hydrogel electrolytes. This comprehensive review commences by presenting an in-depth overview of the fundamental compositions, principles, and distinctive characteristics of various advanced aqueous electrolytes for AZIBs. Subsequently, we systematically scrutinizes the recent research progress achieved with these advanced aqueous electrolytes. Furthermore, we summarizes the challenges and bottlenecks associated with these advanced aqueous electrolytes, along with offering recommendations. Based on the optimization of advanced aqueous electrolytes, this review outlines future directions and potential strategies for the development of high-performance AZIBs. This review is anticipated to provide valuable insights into the development of advanced electrolyte systems for the next generation of stable and sustainable multi-valent secondary batteries.

7.
Appl Environ Microbiol ; 90(9): e0123524, 2024 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-39133001

RESUMEN

Mucin glycoproteins are a significant source of carbon for the gut bacteria. Various gut microbial species possess diverse hydrolytic enzymes and catabolic pathways for breaking down mucin glycans, resulting in competition for the limited nutrients within the gut environment. Adherence to mucin glycans represents a crucial strategy used by gut microbes to access nutrient reservoirs. Understanding these properties is pivotal for comprehending the survival mechanisms of bacteria in the gastrointestinal tract. However, characterization of individual strains within the vast array of coexisting bacteria in the microbiome is challenging. To investigate this, we developed mucin-immobilized particles by immobilizing porcine gastric mucin (PGM) onto glass beads chemically modified with boronic acid. These PGM-immobilized particles were then anaerobically cultured with human fecal microbiota, and the bacteria adhering to PGM were isolated. Interestingly, the microbiome composition remained largely unchanged irrespective of PGM immobilization. Nonetheless, bacteria isolated from PGM-immobilized glass particles exhibited notably higher N-acetylgalactosaminidase activity compared to the control beads. Furthermore, Bacteroides strains isolated from PGM-immobilized glass particles displayed enhanced adhesive and metabolic properties to PGM. These findings underscore the utility of PGM particles in enriching and isolating specific microbes. Moreover, they highlight substantial differences in microbial properties at the strain level. We anticipate that PGM-immobilized particles will advance culture-based microbiome research, emphasizing the significance of strain-level characterization. IMPORTANCE: Metabolism of mucin glycans by gut bacteria represents a crucial strategy for accessing nutrient reservoirs. The efficacy of mucin glycan utilization among gut bacteria hinges on the metabolic capabilities of individual strains, necessitating meticulous strain-level characterization. In this investigation, we used glass beads chemically immobilized with mucins to selectively enrich bacteria from fecal fermentation cultures, based on their superior adhesion to and metabolism of mucin glycoproteins. These findings lend support to the hypothesis that the physical interactions between bacteria and mucin glycoprotein components directly correlate with their capacity to utilize mucins as nutrient sources. Furthermore, our study implies that physical proximity may significantly influence bacterial nutrient acquisition within the ecosystem, facilitating gut bacteria's access to carbohydrate components.


Asunto(s)
Bacterias , Adhesión Bacteriana , Microbioma Gastrointestinal , Animales , Porcinos , Humanos , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/genética , Bacterias/aislamiento & purificación , Heces/microbiología , Mucinas/metabolismo , Mucinas Gástricas/metabolismo
8.
J Org Chem ; 89(18): 13703-13708, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39197853

RESUMEN

Herein, we report the synthesis of 1,1-diarylmethanes via palladium-catalyzed benzylic C(sp3)-O arylation of benzyl alcohol derivatives. An efficient, straightforward approach to synthesizing Pd(0)(xantphos)2 was developed through in situ reduction of Pd(II) to Pd(0) with the bidentate tertiary phosphine xantphos, which proved to be a highly active precatalyst in the Suzuki-Miyaura cross-coupling reaction of benzyl heteroaryl ethers.

9.
ACS Appl Mater Interfaces ; 16(32): 42343-42351, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39096308

RESUMEN

SiOx anode materials are among the most promising candidates for next-generation high-energy-density lithium-ion batteries (LIBs). However, their commercial application is hindered by poor conductivity, low initial Coulombic efficiency (ICE), and an unstable solid electrolyte interface. Developing cost-effective SiOx anodes with high electrochemical performance is crucial for advanced LIBs. To tackle these issues, this study utilized APTES as a silicon source and carbon nanotubes (CNTs) as additives to prepare a T-SiOx/C/CNTs composite material with N doping and in situ carbon coating using a "molecular assembly combined with controlled pyrolysis" strategy under mild conditions. The in situ carbon coating, formed by the pyrolysis of organic groups on the molecular precursor, effectively protects the inner SiOx active material. The introduced CNTs enhance electron migration and improve the rigidity of the carbon coating layer. The prelithiated T-SiOx@C/CNTs electrode achieves an ICE of 91.6%, with a specific capacity of 622 mAh g-1 after 400 cycles at 1 A g-1 and 475.8 mAh g-1 after 800 cycles. Full cell tests with commercial NCM811 cathodes further demonstrate the potential of T-SiOx@C/CNTs as a highly promising anode material. This work provides some insights into the rational design of advanced anode materials for LIBs, paving the way for their future development and application.

10.
Org Lett ; 26(35): 7431-7435, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39177250

RESUMEN

An approach to synthesizing structurally diverse toluene derivatives via sequential meta-C-H and benzylic C-N deaminative functionalization was developed by using a recyclable bifunctional directing template. The functionalized Katritzky salt intermediates are shown to be engaged in a wide range of carbon-carbon and carbon-heteroatom bond formation reactions. The synthetic utility of the strategy was demonstrated by late-stage functionalization of toloxatone.

11.
Langmuir ; 40(32): 17109-17117, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39078415

RESUMEN

Advancements in cost-effective, high-performance alkaline water-splitting systems are crucial for the hydrogen industry. While the significance of electrode material design has been widely acknowledged, the practical implementation of these advancements remains challenging. In this study, we focused on the holistic design of the electrolysis system and successfully developed a novel alkaline water-splitting electrolyzer. The unique configuration of our electrolyzer allows the designed NiFe-LDH/carbon cloth gas diffusion anode to interact solely with the PVA-based gel membrane and air, enabling the direct discharge of oxygen into the gas phase. This innovative feature accelerates anode bubble overflow, reduces gas interference, and decreases the system impedance by minimizing electrode spacing. As a result, by utilizing the NiFeSn-alloy/nickel mesh cathode, our electrolyzer achieves a high current density of 308 mA cm-2 at a cell voltage of 2.0 V and demonstrates exceptional stability over 1000 h.

12.
Cell Discov ; 10(1): 75, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992047

RESUMEN

Conventional macrolide-lincosamide-streptogramin B-ketolide (MLSBK) antibiotics are unable to counter the growing challenge of antibiotic resistance that is conferred by the constitutive methylation of rRNA base A2058 or its G2058 mutation, while the presence of unmodified A2058 is crucial for high selectivity of traditional MLSBK in targeting pathogens over human cells. The absence of effective modes of action reinforces the prevailing belief that constitutively antibiotic-resistant Staphylococcus aureus remains impervious to existing macrolides including telithromycin. Here, we report the design and synthesis of a novel series of macrolides, featuring the strategic fusion of ketolide and quinolone moieties. Our effort led to the discovery of two potent compounds, MCX-219 and MCX-190, demonstrating enhanced antibacterial efficacy against a broad spectrum of formidable pathogens, including A2058-methylated Staphylococcus aureus, Streptococcus pneumoniae, Streptococcus pyogenes, and notably, the clinical Mycoplasma pneumoniae isolates harboring A2058G mutations which are implicated in the recent pneumonia outbreak in China. Mechanistic studies reveal that the modified quinolone moiety of MCX-190 establishes a distinctive secondary binding site within the nascent peptide exit tunnel. Structure-activity relationship analysis underscores the importance of this secondary binding, maintained by a sandwich-like π-π stacking interaction and a water-magnesium bridge, for effective engagement with A2058-methylated ribosomes rather than topoisomerases targeted by quinolone antibiotics. Our findings not only highlight MCX-219 and MCX-190 as promising candidates for next-generation MLSBK antibiotics to combat antibiotic resistance, but also pave the way for the future rational design of the class of MLSBK antibiotics, offering a strategic framework to overcome the challenges posed by escalating antibiotic resistance.

13.
J Am Chem Soc ; 146(29): 20439-20448, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38993055

RESUMEN

The electrocatalytic nitrate reduction reaction (NITRR) holds great promise for purifying wastewater and producing valuable ammonia (NH3). However, the lack of efficient electrocatalysts has impeded the achievement of highly selective NH3 synthesis from the NITRR. In this study, we report the design and synthesis of two polynuclear Co-cluster-based coordination polymers, {[Co2(TCPPDA)(H2O)5]·(H2O)9(DMF)} and {Co1.5(TCPPDA)[(CH3)2NH2]·(H2O)6(DMF)2} (namely, NJUZ-2 and NJUZ-3), which possess distinct coordination motifs with well-defined porosity, high-density catalytic sites, accessible mass transfer channels, and nanoconfined chemical environments. Benefitting from their intriguing multicore metal-organic coordination framework structures, NJUZ-2 and NJUZ-3 exhibit remarkable catalytic activities for the NITRR. At a potential of -0.8 V (vs. RHE) in an H-type cell, they achieve an optimal Faradaic efficiency of approximately 98.5% and high long-term durability for selective NH3 production. Furthermore, the electrocatalytic performance is well maintained even under strongly acidic conditions. When operated under an industrially relevant current density of 469.9 mA cm-2 in a flow cell, a high NH3 yield rate of up to 3370.6 mmol h-1 g-1cat. was observed at -0.5 V (vs. RHE), which is 20.1-fold higher than that obtained in H-type cells under the same conditions. Extensive experimental analyses, in combination with theoretical computations, reveal that the great enhancement of the NITRR activity is attributed to the preferential adsorption of NO3- and the reduction in energy input required for the hydrogenation of *NO3 and *NO2 intermediates.

14.
Org Lett ; 26(29): 6109-6113, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39023060

RESUMEN

Benzylamines belong to an important class of building blocks in the synthesis of biologically active natural products and drugs. Encumbered by amide-directed ortho-C-H activation, remote para-selective C-H functionalization of benzylamines has hitherto not been realized to date. Here, we report a palladium-catalyzed para-selective C-H olefination and acetoxylation of benzylamines using a functionalized benzoyl template. Enhancing the coordination strength of the directing group in the template significantly improved the site selectivity of C-H functionalization.

15.
J Hazard Mater ; 476: 134909, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38905979

RESUMEN

Developing highly-efficient electrocatalysts for the nitrate reduction reaction (NITRR) is a persistent challenge. Here, we present the successful synthesis of 14 amorphous/low crystallinity metal nanofilms on three-dimensional carbon fibers (M-NFs/CP), including Al, Ti, Mn, Fe, Co, Ni, Cu, Zn, Ag, In, Sn, Pb, Au, or Bi, using rapid thermal evaporation. Among these samples, our study identifies the amorphous Co nanofilm with fine agglomerated Co clusters as the optimal electrocatalyst for NITRR in a neutral medium. The resulting Co-NFs/CP exhibits a remarkable Faradaic efficiency (FENH3) of 91.15 % at - 0.9 V vs RHE, surpassing commercial Co foil (39 %) and Co powder (20 %), despite sharing the same metal composition. Furthermore, during the electrochemical NITRR, the key intermediates on the surface of the Co-NFs/CP catalyst were detected by in situ Fourier-transform infrared (FTIR) spectroscopy, and the possible reaction ways were probed by Density functional theory (DFT) calculations. Theoretical calculations illustrate that the abundant low-coordinate Co atoms of Co-NFs/CP could enhances the adsorption of *NO3 intermediates compared to crystalline Co. Additionally, the amorphous Co structure lowers the energy barrier for the rate-determining step (*NH2→*NH3). This work opens a new avenue for the controllable synthesis of amorphous/low crystallinity metal nano-catalysts for various electrocatalysis reaction applications.

16.
Nutr Diabetes ; 14(1): 31, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773069

RESUMEN

OBJECTIVES: The purpose of this review is to investigate the relationship between gastrointestinal microbiome, obesity, and gestational diabetes mellitus (GDM) in an objective manner. METHODS: We conducted a thorough and comprehensive search of the English language literatures published in PubMed, Web of Science, and the Cochrane Library from the establishment of the library until 12 December 2023. Our search strategy included both keywords and free words searches, and we strictly applied inclusion and exclusion criteria. Meta-analyses and systematic reviews were prepared. RESULTS: Six high-quality literature sources were identified for meta-analysis. However, after detailed study and analysis, a certain degree of heterogeneity was found, and the credibility of the combined analysis results was limited. Therefore, descriptive analyses were conducted. The dysbiosis of intestinal microbiome, specifically the ratio of Firmicutes/Bacteroides, is a significant factor in the development of metabolic diseases such as obesity and gestational diabetes. Patients with intestinal dysbiosis and obesity are at a higher risk of developing GDM. CONCLUSIONS: During pregnancy, gastrointestinal microbiome disorders and obesity may contribute to the development of GDM, with all three factors influencing each other. This finding could aid in the diagnosis and management of patients with GDM through further research on their gastrointestinal microbiome.


Asunto(s)
Diabetes Gestacional , Disbiosis , Microbioma Gastrointestinal , Obesidad , Humanos , Diabetes Gestacional/microbiología , Embarazo , Femenino , Obesidad/microbiología , Disbiosis/microbiología
17.
Heliyon ; 10(9): e29915, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38756596

RESUMEN

The control precision of the working device has always been a challenging aspect in unmanned excavator research due to the adoption of a triangular drive mode and a complex hydraulic system in the working mechanism. The article focuses on the research of autonomous control for the downward motion of a robotic arm in an unmanned excavator equipped with a regeneration valve. The study aims to achieve precise tracking of fast movement trajectories during operator manipulation, utilizing Model Predictive Control (MPC). Furthermore, the exceptional disturbance rejection capability of the MPC algorithm is demonstrated through interference application. A comprehensive model considering mechanical, hydraulic, and electrical factors is established for the excavator boom. The MPC algorithm is applied to achieve precise control over the boom descent process, providing a foundation for motion control in unmanned excavators. This article presents a theoretical analysis to elucidate the robustness principle of MPC in the descent control of uncertain dynamic arms. By incorporating real parameters, we successfully track predetermined planned paths at different speeds and validate them on a 20-ton hydraulic excavator. The results demonstrate that the MPC control algorithm accurately manipulates the boom descent motion while exhibiting excellent disturbance rejection performance. Compared to PID control algorithms, MPC offers wider target adaptability range and better disturbance rejection performance, making it suitable for rapid application in controlling working devices of unmanned excavators.

18.
ACS Nano ; 18(22): 14020-14028, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38764286

RESUMEN

The electrochemical CO2 reduction reaction (CO2RR) has emerged as a promising approach for sustainable carbon cycling and valuable chemical production. Various methods and strategies have been explored to boost CO2RR performance. One of the most promising strategies includes the construction of stable ionic interfaces on metallic or molecular catalysts using organic or inorganic cations, which has demonstrated a significant improvement in catalytic performance. The stable ionic interface is instrumental in adjusting adsorption behavior, influencing reactive intermediates, facilitating mass transportation, and suppressing the hydrogen evolution reaction, particularly under acidic conditions. In this Perspective, we provide an overview of the recent advancements in building ionic interfaces in the electrocatalytic process and discuss the application of this strategy to improve the CO2RR performance of metallic and molecular catalysts. We aim to convey the future trends and opportunities in creating ionic interfaces to further enhance carbon utilization efficiency and the productivity of CO2RR products. The emphasis of this Perspective lies in the pivotal role of ionic interfaces in catalysis, providing a valuable reference for future research in this critical field.

19.
Org Lett ; 26(22): 4733-4737, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38780902

RESUMEN

For transition-metal-catalyzed C-H functionalization, precise differentiation between remote adjacent C(sp2)-H bonds remains a long-standing challenge. Here, the template structure-directivity relationship on remote C-H functionalization of arenes was experimentally and computationally studied. By using geometry-tunable templates, Pd-catalyzed remote meta- and para-C-H activation of benzoic acids was achieved with high site selectivity.

20.
Water Res ; 258: 121774, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38772316

RESUMEN

Sustainable and rapid production of high-valent cobalt-oxo (Co(IV)=O) species for efficiently removing organic pollutants is challenging in permoxymonosulfate (PMS) based advanced-oxidation-processes (AOPs) due to the limitation of the high 3d-orbital electronic occupancy of Co and slow conversion from Co(III) to Co(II). Herein, S-scheme BiOCl-OV/CoAl-LDH heterojunction were constructed by ultrathin BiOCl with the oxygen-vacancy (OV) self-assembled with ultrathin CoAl-LDH. OV promoted the formation of charge transfer channel (Bi-O-Co bonds) at the interface of the heterojunction and reduced electron occupation of the Co 3d-orbital to facilitate the generation of Co(IV)=O in the BiOCl-OV/CoAl-LDH/PMS/Visible-light system. S-scheme heterojunction accelerated the photogenerated electrons to allow rapid conversion of Co(III) to Co(II), promoting the fast two-electron transfer from Co(II) to Co(IV)=O. Consequently, the developed BiOCl-OV/CoAl-LDH/PMS/Visible-light system showed excellent degradation efficiency for most of organic pollutions, and exhibited very high removal capability for the actual industrial wastewater. This study provides a new insight into the evolution of Co(IV)=O and the coordinative mechanism for photocatalysis and PMS activation.


Asunto(s)
Cobalto , Cobalto/química , Catálisis , Peróxidos/química , Oxidación-Reducción , Contaminantes Químicos del Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA