Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
BioTech (Basel) ; 11(2)2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35822782

RESUMEN

Botryococcus braunii (B. braunii) is a green microalga primarily found in freshwater, reservoirs, and ponds. Photosynthetic pigments from algae have shown many bioactive molecules with therapeutic potential. Herein, we report the purification, characterization, and anticancer properties of photosystem I light-harvesting complex I (PSI-LHCI) from the green microalga B. braunii UTEX2441. The pigment-protein complex was purified by sucrose density gradient and characterized by its distinctive peaks using absorption, low-temperature (77 K) fluorescence, and circular dichroism (CD) spectroscopic analyses. Protein complexes were resolved by blue native-PAGE and two-dimensional SDS-PAGE. Triple-negative breast cancer MDA-MB-231 cells were incubated with PSI-LHCI for all of our experiments. Cell viability was assessed, revealing a significant reduction in a time- and concentration-dependent manner. We confirmed the internalization of PSI-LHCI within the cytoplasm and nucleus after 12 h of incubation. Cell death mechanism by oxidative stress was confirmed by the production of reactive oxygen species (ROS) and specifically superoxide. Furthermore, we monitored autophagic flux, apoptotic and necrotic features after treatment with PSI-LHCI. Treated MDA-MB-231 cells showed positive autophagy signals in the cytoplasm and nucleus, and necrotic morphology by the permeabilization of the cell membrane. Our findings demonstrated for the first time the cytotoxic properties of B. braunii PSI-LHCI by the induction of ROS and autophagy in breast cancer cells.

2.
Pharmaceutics ; 14(3)2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35335867

RESUMEN

The folate receptor alpha (FR), which is overexpressed in solid tumors including NSCLC, can be utilized for active tumor targeting to afford more effective cancer therapies. In this context, cytochrome c (Cyt c) has drawn attention to cancer research because it is non-toxic, yet, when delivered to the cytoplasm of cancer cells, can kill them by inducing apoptosis. Cyt c nanoparticles (NPs, 169 ± 9 nm) were obtained by solvent precipitation with acetonitrile, and stabilized by reversible homo-bifunctional crosslinking to accomplish a Cyt-c-based drug delivery system that combines stimulus-responsive release and active targeting. Cyt c was released under intracellular redox conditions, due to an S-S bond in the NPs linker, while NPs remained intact without any release under extracellular conditions. The NP surface was decorated with a hydrophilic folic acid-polyethylene glycol (FA-PEG) polymer for active targeting. The FA-decorated NPs specifically recognized and killed cancer cells (IC50 = 47.46 µg/mL) that overexpressed FR, but showed no toxicity against FR-negative cells. Confocal microscopy confirmed the preferential uptake and apoptosis induction of our NPs by FR-positive cancer cells. In vivo experiments using a Lewis lung carcinoma (LLC) mouse model showed visible NP accumulation within the tumor and inhibited the growth of LLC tumors.

3.
Cancers (Basel) ; 12(5)2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32413975

RESUMEN

The delivery of Cytochrome c (Cyt c) to the cytosol stimulates apoptosis in cells where its release from mitochondria and apoptotic induction is inhibited. We developed a drug delivery system consisting of Cyt c nanoparticles decorated with folate-poly(ethylene glycol)-poly(lactic-co-glycolic acid)-thiol (FA-PEG-PLGA-SH) to deliver Cyt c into cancer cells and tested their targeting in the Lewis Lung Carcinoma (LLC) mouse model. Cyt c-PLGA-PEG-FA nanoparticles (NPs) of 253 ± 55 and 354 ± 11 nm were obtained by Cyt c nanoprecipitation, followed by surface decoration with the co-polymer SH-PLGA-PEG-FA. The internalization of Cyt c-PLGA-PEG-FA nanoparticles (NPs) in LLC cells was confirmed by confocal microscopy. NP caspase activation was more efficient than the NP-free formulation. Caspase activity assays showed NPs retained 88-96% Cyt c activity. The NP formulations were more effective in decreasing LLC cell viability than NP-free formulation, with IC50 49.2 to 70.1 µg/mL versus 129.5 µg/mL, respectively. Our NP system proved to be thrice as selective towards cancerous than normal cells. In vivo studies using near infrared-tagged nanoparticles show accumulation in mouse LLC tumor 5 min post-injection. In conclusion, our NP delivery system for Cyt c shows superiority over the NP-free formulation and reaches a folic acid-overexpressing tumor in an immune-competent animal model.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA