Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39091781

RESUMEN

Neurons can collectively represent the current sensory experience while an animal is exploring its environment or remote experiences while the animal is immobile. These remote representations can reflect learned associations1-3 and be required for learning4. Neurons in the medial entorhinal cortex (MEC) reflect the animal's current location during movement5, but little is known about what MEC neurons collectively represent during immobility. Here, we recorded thousands of neurons in superficial MEC and dorsal CA1 as mice learned to associate two pairs of rewarded locations. We found that during immobility, the MEC neural population frequently represented positions far from the animal's location, which we defined as 'non-local coding'. Cells with spatial firing fields at remote locations drove non-local coding, even as cells representing the current position remained active. While MEC non-local coding has been reported during sharp-wave ripples in downstream CA16, we observed non-local coding more often outside of ripples. In fact, CA1 activity was less coordinated with MEC during non-local coding. We further observed that non-local coding was pertinent to the task, as MEC preferentially represented remote task-relevant locations at appropriate times, while rarely representing task-irrelevant locations. Together, this work raises the possibility that MEC non-local coding could strengthen associations between locations independently from CA1.

2.
bioRxiv ; 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37961150

RESUMEN

Synchronous excitatory discharges from the entorhinal cortex (EC) to the dentate gyrus (DG) generate fast and prominent patterns in the hilar local field potential (LFP), called dentate spikes (DSs). As sharp-wave ripples in CA1, DSs are more likely to occur in quiet behavioral states, when memory consolidation is thought to take place. However, their functions in mnemonic processes are yet to be elucidated. The classification of DSs into types 1 or 2 is determined by their origin in the lateral or medial EC, as revealed by current source density (CSD) analysis, which requires recordings from linear probes with multiple electrodes spanning the DG layers. To allow the investigation of the functional role of each DS type in recordings obtained from single electrodes and tetrodes, which are abundant in the field, we developed an unsupervised method using Gaussian mixture models to classify such events based on their waveforms. Our classification approach achieved high accuracies (> 80%) when validated in 8 mice with DG laminar profiles. The average CSDs, waveforms, rates, and widths of the DS types obtained through our method closely resembled those derived from the CSD-based classification. As an example of application, we used the technique to analyze single-electrode LFPs from apolipoprotein (apo) E3 and apoE4 knock-in mice. We observed that the latter group, which is a model for Alzheimer's disease, exhibited wider DSs of both types from a young age, with a larger effect size for DS type 2, likely reflecting early pathophysiological alterations in the EC-DG network, such as hyperactivity. In addition to the applicability of the method in expanding the study of DS types, our results show that their waveforms carry information about their origins, suggesting different underlying network dynamics and roles in memory processing.

3.
Nat Aging ; 1(10): 932-947, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-36172600

RESUMEN

The evident genetic, pathological, and clinical heterogeneity of Alzheimer's disease (AD) poses challenges for traditional drug development. We conducted a computational drug repurposing screen for drugs to treat apolipoprotein (apo) E4-related AD. We first established apoE-genotype-dependent transcriptomic signatures of AD by analyzing publicly-available human brain database. We then queried these signatures against the Connectivity Map database containing transcriptomic perturbations of >1300 drugs to identify those that best reverse apoE-genotype-specific AD signatures. Bumetanide was identified as a top drug for apoE4 AD. Bumetanide treatment of apoE4 mice without or with Aß accumulation rescued electrophysiological, pathological, or cognitive deficits. Single-nucleus RNA-sequencing revealed transcriptomic reversal of AD signatures in specific cell types in these mice, a finding confirmed in apoE4-iPSC-derived neurons. In humans, bumetanide exposure was associated with a significantly lower AD prevalence in individuals over the age of 65 in two electronic health record databases, suggesting effectiveness of bumetanide in preventing AD.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Humanos , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Apolipoproteína E4/genética , Bumetanida/farmacología , Péptidos beta-Amiloides/metabolismo , Reposicionamiento de Medicamentos , Ratones Transgénicos , Apolipoproteínas E/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA