Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Syst Des Eng ; 7(6): 607-621, 2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-36876150

RESUMEN

For a series of phospholipid coated calamitic nematic liquid crystal droplets (5CB, 6CB, 7CB, E7 and MLC7023) of diameter ∼18 µm, the addition of chiral dopant leaves the sign of surface anchoring unchanged. Herein we report that for these chiral nematic droplets an analyte induced transition from a Frank-Pryce structure (with planar anchoring) to a nested-cup structure (with perpendicular anchoring) is accompanied by changes in the intensity of reflected light. We propose this system as both a general scheme for understanding director fields in chiral nematic liquid crystal droplets with perpendicular anchoring and as an ideal candidate to be utilised as the basis for developing cheap, single use LC-based sensor devices.

2.
Nat Commun ; 12(1): 4717, 2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34354049

RESUMEN

Ferroelectric liquid crystals remain of interest for display and spatial light modulators because they exhibit significantly faster optical response times than nematics. However, smectic layers are sensitive to shock-induced flow and are usually permanently displaced once a well-aligned sample is disrupted, rendering such devices inoperable. We introduce a vertical alignment geometry combined with a surface-relief grating to control both the smectic layer and director orientations. This mode undergoes "self-healing" of the smectic layers after disruption by shock-induced flow. Sub-millisecond switching between optically distinct states is demonstrated using in-plane electric fields. Self-healing occurs within a second after being disrupted by shock, wherein both the layer and director realign without additional external stimulus. The route to material improvements for optimised devices is discussed, promising faster spatial light modulators for high-speed adaptive optics, micro-displays for virtual/augmented reality and telecommunications with inherent shock stability.

3.
Micromachines (Basel) ; 12(3)2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33671001

RESUMEN

Liquid crystals are valuable materials for applications in beam steering devices. In this paper, an overview of the use of liquid crystals in the field of adaptive optics specifically for beam steering and lensing devices is presented. The paper introduces the properties of liquid crystals that have made them useful in this field followed by a more detailed discussion of specific liquid crystal devices that act as switchable optical components of refractive and diffractive types. The relative advantages and disadvantages of the different devices and techniques are summarised.

4.
Soft Matter ; 17(8): 2234-2241, 2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33469638

RESUMEN

We describe a modified microfluidic method for making Giant Unilamellar Vesicles (GUVs) via water/octanol-lipid/water double emulsion droplets. At a high enough lipid concentration we show that the de-wetting of the octanol from these droplets occurs spontaneously (off-chip) without the need to use shear to aid the de-wetting process. The resultant mixture of octanol droplets and GUVs can be separated by making use of the buoyancy of the octanol. A simpler microfluidic device and pump system can be employed and, because of the higher flow-rates and much higher rate of formation of the double emulsion droplets (∼1500 s-1 compared to up to ∼75 s-1), it is easier to make larger numbers of GUVs and larger volumes of solution. Because of the potential for using GUVs that incorporate lyotropic nematic liquid crystals in biosensors we have used this method to make GUVs that incorporate the nematic phases of sunset yellow and disodium chromoglycate. However, the phase behaviour of these lyotropic liquid crystals is quite sensitive to concentration and we found that there is an unexpected spread in the concentration of the contents of the GUVs obtained.

5.
Small ; 16(40): e2003352, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32893438

RESUMEN

Dispersion of microparticles in nematic liquid crystals offers a novel means for controlling both their orientation and position through the combination of topology and external stimuli. Here, cuboidal and triangular prism shaped microparticles in parallel plate capacitor cells filled with a nematic liquid crystal are studied. Experimental observations are compared with numerical simulations to show that the optimal orientation of the particles is determined by their aspect rations, the relative separation gap of their containers and the applied voltage. It is observed that in systems that allow unrestricted particle rotation, the long axes of the particles are able to fully align themselves with the external electric field. However, when particle rotation is geometrically restricted, it is found that increasing the voltage past a critical value causes the short axis of the particle to realign with the electric field due to anchoring breaking. It is shown that symmetry of the particles then plays a key role in their dynamics following the removal of the electric field, allowing the triangular prisms to travel perpendicular to the applied electric field, whereas only rotation is possible for the cuboidal particles.

6.
Langmuir ; 36(23): 6436-6446, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32392071

RESUMEN

In liquid crystal (LC) droplets, small changes in surface anchoring energy can produce large changes in the director field which result in readily detectable optical effects. This makes them attractive for use as biosensors. Coating LC droplets with a phospholipid monolayer provides a bridge between the hydrophobic world of LCs and the water-based world of biology and makes it possible to incorporate naturally occurring biosensor systems. However, phospholipids promote strong perpendicular (homeotropic) anchoring that can inhibit switching of the director field. We show that the tendency for phospholipid layers to promote perpendicular anchoring can be suppressed by using synthetic phospholipids in which the acyl chains are terminated with bulky tert-butyl or ferrocenyl groups; the larger these end-group(s), the less likely the system is to be perpendicular/radial. Additionally, the droplet director field is found to be dependent on the nature of the LC, particularly its intrinsic surface properties, but not (apparently) on the sign of the dielectric anisotropy, the proximity to the melting/isotropic phase transition, the surface tension (in air), or the values of the Frank elastic constants.

7.
Lab Chip ; 19(6): 1082-1089, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30785139

RESUMEN

We describe a novel biosensor based on phospholipid-coated nematic liquid crystal (LC) droplets and demonstrate the detection of Smp43, a model antimicrobial peptide (AMP) from the venom of North African scorpion Scorpio maurus palmatus. Mono-disperse lipid-coated LC droplets of diameter 16.7 ± 0.2 µm were generated using PDMS microfluidic devices with a flow-focusing configuration and were the target for AMPs. The droplets were trapped in a bespoke microfluidic trap structure and were simultaneously treated with Smp43 at gradient concentrations in six different chambers. The disruption of the lipid monolayer by the Smp43 was detected (<6 µM) at concentrations well within its biologically active range, indicated by a dramatic change in the appearance of the droplets associated with the transition from a typical radial configuration to a bipolar configuration, which is readily observed by polarizing microscopy. This suggests the system has feasibility as a drug-discovery screening tool. Further, compared to previously reported LC droplet biosensors, this LC droplet biosensor with a lipid coating is more biologically relevant and its ease of use in detecting membrane-related biological processes and interactions has the potential for development as a reliable, low-cost and disposable point of care diagnostic tool.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/análisis , Técnicas Biosensibles/métodos , Cristales Líquidos/química , Fosfolípidos/química , Técnicas Biosensibles/instrumentación , Dispositivos Laboratorio en un Chip , Microscopía Fluorescente , Liposomas Unilamelares/química
8.
Nat Commun ; 10(1): 198, 2019 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-30643151

RESUMEN

Nematic liquid crystals are anisotropic fluids that self-assemble into vector fields, which are governed by geometrical and topological laws. Consequently, particulate or droplet inclusions self-assemble in nematic domains through a balance of topological defects. Here, we use double emulsions of water droplets inside radial nematic liquid crystal droplets to form various structures, ranging from linear chains to three-dimensional fractal structures. The system is modeled as a formation of satellite droplets, distributed around a larger, central core droplet and we extend the problem to explain the formation of fractal structures. We show that a distribution of droplet sizes plays a key role in determining the symmetry properties of the resulting geometric structures. The results are relevant to a variety of inclusions, ranging from colloids suspensions to multi-emulsion systems. Such systems have potential applications for novel switchable photonic structures as well as providing wider insights into the packing of self-assembled structures.

9.
Langmuir ; 34(37): 10865-10873, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30132669

RESUMEN

A simple method for vapour-phase deposition of a silane surfactant is presented, which produces tuneable homeotropic anchoring in liquid crystals. Both the zenithal anchoring energy and surface slip are measured by fitting to the latching threshold versus pulse width characteristic of a zenithal bistable nematic liquid crystal device based on a deep, submicron grating. The method is shown to give microscopic anchoring strength between 5 × 10-5 and 2 × 10-4 J/m2, with a surface slip of about 100 nm. The silanated surfaces are characterized using atomic force microscopy and X-ray photoelectron spectroscopy, which show a direct relationship between the surface coverage of silane groups and the resulting anchoring energy.

10.
Phys Rev E ; 97(4-1): 042702, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29758680

RESUMEN

Tilted smectic liquid crystal phases such as the smectic-C phase seen in calamitic liquid crystals are usually treated using the assumption of biaxial orthorhombic symmetry. However, the smectic-C phase has monoclinic symmetry, thereby allowing disassociation of the principal optic and dielectric axes based on symmetry and invariance principles. This is demonstrated here by comparing optical and dielectric measurements for two materials with highly first-order direct transitions from nematic to smectic-C phases. The results show a high difference between the orientations of the principal axes sets, which is interpreted as the existence of two distinct cone angles for optical and dielectric frequencies. Both materials exhibit an increasing degree of monoclinic behavior with decreasing temperature. Due to fast switching speeds, ferroelectric smectic-C* materials are important for fast modulators and LCoS devices, where the dielectric biaxiality influences device operation.

11.
Opt Express ; 23(8): 9911-6, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25969032

RESUMEN

Liquid crystal (LC) contact lenses are emerging as an exciting technology for vision correction. A homeotropically (vertical) aligned LC lens is reported that offers improved optical quality and simplified construction techniques over previously reported LC contact lens designs. The lens has no polarization dependence in the off state and produces a continuous change in optical power of up to 2.00 ± 0.25 D with a voltage applied. The variation in optical power results from the voltage-induced change in refractive index of the nematic LC layer, from 1.52 to a maximum of 1.72. One device substrate is treated with an alignment layer that is a mixture of planar and homeotropic polyimides, rubbed to induce a preferred director orientation in the switched state. Defects that could occur during switching are thus avoided and the lens exhibits excellent optical quality with a continuous variation in focal power.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...