RESUMEN
Potato virus V (PVV) causes a disease of potato (Solanum tubersosum) in South and Central America, Europe, and the Middle East. We report here the complete genomic sequences of 42 new PVV isolates from the potato's Andean domestication center in Peru and of eight historical or recent isolates from Europe. When the principal open reading frames of these genomic sequences together with those of nine previously published genomic sequences were analyzed, only two from Peru and one from Iran were found to be recombinant. The phylogeny of the 56 nonrecombinant open reading frame sequences showed that the PVV population had two major phylogroups, one of which formed three minor phylogroups (A1 to A3) of isolates, all of which are found only in the Andean region of South America (Peru and Colombia), and the other formed two minor phylogroups, a basal one of Andean isolates (A4) that is paraphyletic to a crown cluster containing all the isolates found outside South America (World). This suggests that PVV originated in the Andean region, with only one minor phylogroup spreading elsewhere in the world. In minor phylogroups A1 and A3, there were two subclades on long branches containing isolates from S. phureja evolving more rapidly than the others, and these interfered with dating calculations. Although no temporal signal was directly detected among the dated nonrecombinant sequences, PVV and potato virus Y (PVY) are from the same potyvirus lineage and are ecologically similar, so "subtree dating" was done via a single maximum likelihood phylogeny of PVV and PVY sequences, and PVY's well-supported 157 ce "time to most common recent ancestor" was extrapolated to date that of PVV as 29 bce. Thus the independent historical coincidences supporting the datings of the PVV and PVY phylogenies are the same; PVV arose ≥2,000 years ago in the Andes and was taken to Europe during the Columbian Exchange, where it diversified around 1853 ce, soon after the European potato late blight pandemic. PVV is likely to be more widespread than currently realized and is of biosecurity relevance for world regions that have not yet recorded its presence.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Asunto(s)
Filogenia , Potyvirus , Solanum tuberosum , Evolución Biológica , Enfermedades de las Plantas/virología , Potyvirus/clasificación , Solanum tuberosum/virología , América del SurRESUMEN
Potato virus X (PVX) occurs worldwide and causes an important potato disease. Complete PVX genomes were obtained from 326 new isolates from Peru, which is within the potato crop's main domestication center, 10 from historical PVX isolates from the Andes (Bolivia, Peru) or Europe (UK), and three from Africa (Burundi). Concatenated open reading frames (ORFs) from these genomes plus 49 published genomic sequences were analyzed. Only 18 of them were recombinants, 17 of them Peruvian. A phylogeny of the non-recombinant sequences found two major (I, II) and five minor (I-1, I-2, II-1, II-2, II-3) phylogroups, which included 12 statistically supported clusters. Analysis of 488 coat protein (CP) gene sequences, including 128 published previously, gave a completely congruent phylogeny. Among the minor phylogroups, I-2 and II-3 only contained Andean isolates, I-1 and II-2 were of both Andean and other isolates, but all of the three II-1 isolates were European. I-1, I-2, II-1 and II-2 all contained biologically typed isolates. Population genetic and dating analyses indicated that PVX emerged after potato's domestication 9000 years ago and was transported to Europe after the 15th century. Major clusters A-D probably resulted from expansions that occurred soon after the potato late-blight pandemic of the mid-19th century. Genetic comparisons of the PVX populations of different Peruvian Departments found similarities between those linked by local transport of seed potato tubers for summer rain-watered highland crops, and those linked to winter-irrigated crops in nearby coastal Departments. Comparisons also showed that, although the Andean PVX population was diverse and evolving neutrally, its spread to Europe and then elsewhere involved population expansion. PVX forms a basal Potexvirus genus lineage but its immediate progenitor is unknown. Establishing whether PVX's entirely Andean phylogroups I-2 and II-3 and its Andean recombinants threaten potato production elsewhere requires future biological studies.
Asunto(s)
Vectores de Enfermedades , Potexvirus/genética , Solanum tuberosum/virología , Animales , Genoma Viral , Genómica , Humanos , Sistemas de Lectura Abierta , Filogenia , Filogeografía , Enfermedades de las Plantas/virología , Potexvirus/clasificación , Infecciones por Virus ARN/transmisión , ARN Viral/genéticaRESUMEN
Forty-seven potato virus A (PVA) isolates from Europe, Australia, and South America's Andean region were subjected to high-throughput sequencing, and 46 complete genomes from Europe (n = 9), Australia (n = 2), and the Andes (n = 35) obtained. These and 17 other genomes gave alignments of 63 open reading frames 9,180 nucleotides long; 9 were recombinants. The nonrecombinants formed three tightly clustered, almost equidistant phylogroups; A comprised 14 Peruvian potato isolates; W comprised 37 from potato in Peru, Argentina, and elsewhere in the world; and T contained three from tamarillo in New Zealand. When five isolates were inoculated to a potato cultivar differential, three strain groups (= pathotypes) unrelated to phylogenetic groupings were recognized. No temporal signal was detected among the dated nonrecombinant sequences, but PVA and potato virus Y (PVY) are from related lineages and ecologically similar; therefore, "relative dating" was obtained using a single maximum-likelihood phylogeny of PVA and PVY sequences and PVY's well-supported 157 CE "time to most common recent ancestor". The PVA datings obtained were supported by several independent historical coincidences. The PVA and PVY populations apparently arose in the Andes approximately 18 centuries ago, and were taken to Europe during the Columbian Exchange, radiating there after the mid-19th century potato late blight pandemic. PVA's phylogroup A population diverged more recently in the Andean region, probably after new cultivars were bred locally using newly introduced Solanum tuberosum subsp. tuberosum as a parent. Such cultivars became widely grown, and apparently generated the A × W phylogroup recombinants. Phylogroup A, and its interphylogroup recombinants, might pose a biosecurity risk.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Asunto(s)
Potyvirus , Solanum tuberosum , Argentina , Australia , Europa (Continente) , Nueva Zelanda , Filogenia , Fitomejoramiento , Enfermedades de las Plantas , Potyvirus/genéticaRESUMEN
Potato virus Y (PVY) isolates from potato currently exist as a complex of six biologically defined strain groups all containing nonrecombinant isolates and at least 14 recombinant minor phylogroups. Recent studies on eight historical UK potato PVY isolates preserved since 1984 found only nonrecombinants. Here, four of five PVY isolates from cultivated potato or wild Solanum spp. collected recently in Australia, Mexico, and the U.S.A. were typed by inoculation to tobacco plants and/or serological testing using monoclonal antibodies. Next, these five modern isolates and four additional historical UK isolates belonging to biological strain groups PVYC, PVYZ, or PVYN obtained from cultivated potato in 1943 to 1984 were sequenced. None of the nine complete PVY genomes obtained were recombinants. Phylogenetic analysis revealed that the four historical UK isolates were in minor phylogroups PVYC1 (YC-R), PVYO-O (YZ-CM1), PVYNA-N (YN-M), or PVYEu-N (YN-RM), Australian isolate YO-BL2 was in minor phylogroup PVYO-O5, and both Mexican isolate YN-Mex43 and U.S.A. isolates YN-MT12_Oth288, YN-MT12_Oth295, and YN-WWAA150131G42 were in minor phylogroup PVYEu-N. When combined, these new findings and those from the eight historical UK isolates sequenced earlier provide important historical insights concerning the diversity of early PVY populations in Europe and the appearance of recombinants in that part of the world. They and four recent Australian isolates sequenced earlier also provide geographical insights about the geographical distribution and diversity of PVY populations in Australia and North America.
Asunto(s)
Potyvirus , Australia , Europa (Continente) , Variación Genética , México , América del Norte , Filogenia , Enfermedades de las PlantasRESUMEN
A complete coding sequence of the type strain of Andean potato mottle virus from Peru (isolate Lm) was obtained. Comparison of its RNA1 and RNA2 sequences with variants of this virus isolated in Brazil revealed RNA1 and RNA2 nucleotide identities of 81 to 83% and 70 to 71%, respectively.
RESUMEN
Arracacha virus B type (AVB-T) and oca (AVB-O) strains from arracacha (Arracacia xanthorrhiza) and oca (Oxalis tuberosa) samples collected in 1975 and two additional isolates obtained from arracacha (AVB-PX) and potato (AVB-6A) in Peru in 1976 and 1978, respectively, were studied. In its host responses and serological properties, AVB-PX most resembled AVB-T, whereas AVB-6A most resembled AVB-O. Complete genomic sequences of the RNA-1 and RNA-2 of each isolate were obtained following high-throughput sequencing of RNA extracts from isolates preserved for 38 (AVB-PX) or 32 (the other 3 isolates) years, and compared with a genomic sequence of AVB-O obtained previously (PV-0082). RNA-2 was unexpectedly divergent compared to RNA-1, with the nucleotide (nt) sequence identity of different AVB isolates varying by up to 76% (RNA-2) and 89% (RNA-1). The coat protein amino acid sequences were the most divergent, with AVB-O and AVB-6A having only 68% identity to AVB-T and AVB-PX. Since the RNA2 sequence differences between the two isolate groupings also coincided with host range, symptom, and serological differences, AVB demonstrates considerable intraspecific divergence.
Asunto(s)
Genoma Viral/genética , ARN Viral/genética , Secoviridae/genética , Secuencia de Aminoácidos , Secuencia de Bases , Proteínas de la Cápside/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Magnoliopsida/virología , Oxalidaceae/virología , Perú , Enfermedades de las Plantas/virología , Secoviridae/aislamiento & purificación , Solanum tuberosum/virologíaRESUMEN
Potato virus Y (PVY) causes disease in potatoes and other solanaceous crops. The appearance of its necrogenic strains in the 1980s made it the most economically important virus of potatoes. We report the isolation and genomic sequences of 32 Peruvian isolates of PVY which, together with 428 published PVY genomic sequences, gave an alignment of 460 sequences. Of these 190 (41%) were non-recombinant, and 162 of these provided a dated phylogeny, that corresponds well with the likely history of PVY, and show that PVY originated in South America which is where potatoes were first domesticated. The most basal divergences of the PVY population produced the N and C: O phylogroups; the origin of the N phylogroup is clearly Andean, but that of the O and C phylogroups is unknown, although they may have been first to establish in European crops. The current PVY population originated around 156 CE. PVY was probably first taken from South America to Europe in the 16th century in tubers. Most of the present PVY diversity emerged in the second half of the 19th century, after the Phytophthora infestans epidemics of the mid-19th century destroyed the European crop and stimulated potato breeding. Imported breeding lines were shared, and there was no quarantine. The early O population was joined later by N phylogroup isolates and their recombinants generated the R1 and R2 populations of damaging necrogenic strains. Our dating study has confirmed that human activity has dominated the phylodynamics of PVY for the last two millennia.
RESUMEN
In 1976, a virus with flexuous, filamentous virions typical of the family Potyviridae was isolated from symptomatic pepino (Solanum muricatum) plants growing in two valleys in Peru's coastal desert region. In 2014, a virus with similar-shaped virions was isolated from asymptomatic fruits obtained from pepino plants growing in six coastal valleys and a valley in Peru's Andean highlands. Both were identified subsequently as Wild potato mosaic virus (WPMV) by serology or high-throughput sequencing (HTS). The symptoms caused by two old and seven new isolates from pepino were examined in indicator plants. Infected solanaceous hosts varied considerably in their sensitivities to infection and individual isolates varied greatly in virulence. All seven new isolates caused quick death of infected Nicotiana benthamiana plants and more than half of them killed infected plants of Physalis floridana and S. chancayense. These three species were the most sensitive to infection. The most virulent isolate was found to be BA because it killed five of eight solanaceous host species whereas CA was the least severe because it only killed N. benthamiana. Using HTS, complete genomic sequences of six isolates were obtained, with one isolate (FE) showing evidence of recombination. The distances between individual WPMV isolates in phylogenetic trees and the geographical distances between their collection sites were found to be unrelated. The individual WPMV isolates displayed nucleotide sequence identities of 80.9-99.8%, whereas the most closely related virus, Potato virus V (PVV), was around 75% identical to WPMV. WPMV, PVV, and Peru tomato virus formed clusters of similar phylogenetic diversity, and were found to be distinct but related viruses within the overall Potato virus Y lineage. WPMV infection seems widespread and of likely economic significance to pepino producers in Peru's coastal valleys. Because it constitutes the fifth virus found infecting pepino and this crop is entirely vegetatively propagated, development of healthy pepino stock programs is advocated.
Asunto(s)
Genoma Viral , Potyvirus , Solanum , Genoma Viral/genética , Perú , Filogenia , Potyvirus/clasificación , Potyvirus/genética , Solanum/microbiología , Especificidad de la EspecieRESUMEN
We present the complete genomic sequence of a Potato virus T (PVT) isolate originally obtained from a Bolivian potato sample collected in 1976, and we compare it with the genome of the PVT type isolate from Peru. There is an 81% nucleotide identity between the two genomes of this Andean potato virus.
RESUMEN
Biological characteristics of 11 Potato virus S (PVS) isolates from three cultivated potato species (Solanum spp.) growing in five Andean countries and 1 from Scotland differed in virulence depending on isolate and host species. Nine isolates infected Chenopodium quinoa systemically but two others and the Scottish isolate remained restricted to inoculated leaves; therefore, they belonged to biologically defined strains PVSA and PVSO, respectively. When nine wild potato species were inoculated, most developed symptomless systemic infection but Solanum megistacrolobum developed systemic hypersensitive resistance (SHR) with one PVSO and two PVSA isolates. Andean potato cultivars developed mostly asymptomatic primary infection but predominantly symptomatic secondary infection. In both wild and cultivated potato plants, PVSA and PVSO elicited similar foliage symptoms. Following graft inoculation, all except two PVSO isolates were detected in partially PVS-resistant cultivar Saco, while clone Snec 66/139-19 developed SHR with two isolates each of PVSA and PVSO. Myzus persicae transmitted all nine PVSA isolates but none of the three PVSO isolates. All 12 isolates were transmitted by plant-to-plant contact. In infective sap, all isolates had thermal inactivation points of 55 to 60°C. Longevities in vitro were 25 to 40 days with six PVSA isolates but less than 21 days for the three PVSO isolates. Dilution end points were 10-3 for two PVSO isolates but 10-4 to 10-6 with the other isolates. Complete new genome sequences were obtained from seven Andean PVS isolates; seven isolates from Africa, Australia, or Europe; and single isolates from S. muricatum and Arracacia xanthorhiza. These 17 new genomes and 23 from GenBank provided 40 unique sequences; however, 5 from Eurasia were recombinants. Phylogenetic analysis of the 35 nonrecombinants revealed three major lineages, two predominantly South American (SA) and evenly branched and one non-SA with a single long basal branch and many distal subdivisions. Using least squares dating and nucleotide sequences, the two nodes of the basal PVS trifurcation were dated at 1079 and 1055 Common Era (CE), the three midphylogeny nodes of the SA lineages at 1352, 1487, and 1537 CE, and the basal node to the non-SA lineage at 1837 CE. The Potato rough dwarf virus/Potato virus P (PVS/PRDV/PVP) cluster was sister to PVS and diverged 5,000 to 7,000 years ago. The non-SA PVS lineage contained 18 of 19 isolates from S. tuberosum subsp. tuberosum but the two SA lineages contained 6 from S. tuberosum subsp. andigena, 4 from S. phureja, 3 from S. tuberosum subsp. tuberosum, and 1 each from S. muricatum, S. curtilobum, and A. xanthorrhiza. This suggests that a potato-infecting proto-PVS/PRDV/PVP emerged in South America at least 5,000 years ago, became endemic, and diverged into a range of local Solanum spp. and other species, and one early lineage spread worldwide in potato. Preventing establishment of the SA lineages is advised for all countries still without them.
Asunto(s)
Carlavirus/genética , Carlavirus/fisiología , Filogenia , Enfermedades de las Plantas/virología , Solanum tuberosum/virología , Hojas de la Planta/virología , América del SurRESUMEN
We present here the first complete genomic sequence of Arracacha virus A from a Peruvian arracacha sample collected in 1975 and compare it with the genomes of other nepoviruses. Its RNA1 and RNA2 both had greatest amino acid identities with those of the subgroup A nepovirus Melon mild mottle virus.