Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 970
Filtrar
1.
Sci Total Environ ; 947: 174594, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38992349

RESUMEN

During the recent times, environmental antibiotic resistance genes (ARGs) and their potential transfer to other bacterial hosts of pathogenic importance are of serious concern. However, the dissemination strategies of such ARGs are largely unknown. We tested that saprotrophic soil fungi differentially enriched antibiotic resistant bacteria (ARBs) and subsequently contributed in spatial distribution of selective ARGs. Wafergen qPCR analysis of 295 different ARGs was conducted for manure treated pre-sterilized soil incubated or not with selected bacterial-fungal consortia. The qPCR assay detected unique ARGs specifically found in the mycosphere of ascomycetous and basidiomycetous fungi. Both fungi exerted potentially different selection pressures on ARBs, resulting in different patterns of ARGs dissemination (to distant places) along their respective growing fungal highways. The relative abundance of mobile genetic elements (MGEs) was significantly decreased along fungal highways compared to the respective inoculation points. Moreover, the decrease in MGEs and ARGs (along fungal highways) was more prominent over time which depicts the continuous selection pressure of growing fungi on ARBs for enrichment of particular ARGs in mycosphere. Such data also indicate the potential role of saprotrophic soil fungi to facilitate horizontal gene transfer within mycospheric environmental settings. Our study, therefore, advocates to emphasize the future investigations for such (bacteria-fungal) interactive microbial consortia for potential (spatial) dissemination of resistance determinants which may ultimately increase the exposure risks of ARGs.

2.
Ecol Lett ; 27(6): e14462, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39031813

RESUMEN

The rhizosphere influence on the soil microbiome and function of crop wild progenitors (CWPs) remains virtually unknown, despite its relevance to develop microbiome-oriented tools in sustainable agriculture. Here, we quantified the rhizosphere influence-a comparison between rhizosphere and bulk soil samples-on bacterial, fungal, protists and invertebrate communities and on soil multifunctionality across nine CWPs at their sites of origin. Overall, rhizosphere influence was higher for abundant taxa across the four microbial groups and had a positive influence on rhizosphere soil organic C and nutrient contents compared to bulk soils. The rhizosphere influence on abundant soil microbiomes was more important for soil multifunctionality than rare taxa and environmental conditions. Our results are a starting point towards the use of CWPs for rhizosphere engineering in modern crops.


Asunto(s)
Productos Agrícolas , Microbiota , Rizosfera , Microbiología del Suelo , Productos Agrícolas/microbiología , Suelo/química , Hongos/fisiología , Animales , Bacterias/clasificación , Bacterias/aislamiento & purificación , Invertebrados/microbiología , Invertebrados/fisiología
3.
JAMA Oncol ; 10(7): 932-940, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38869865

RESUMEN

Importance: Uninterrupted targeted therapy until disease progression or intolerable toxic effects is currently the routine therapy for advanced non-small cell lung cancer (NSCLC) involving driver gene variations. However, drug resistance is inevitable. Objective: To assess the clinical feasibility of adaptive de-escalation tyrosine kinase inhibitor (TKI) treatment guided by circulating tumor DNA (ctDNA) for achieving complete remission after local consolidative therapy (LCT) in patients with advanced NSCLC. Design, Setting, and Participants: This prospective nonrandomized controlled trial was conducted at a single center from June 3, 2020, to July 19, 2022, and included 60 patients with advanced NSCLC with driver variations without radiologically detectable disease after TKI and LCT. The median (range) follow-up time was 19.2 (3.8-29.7) months. Data analysis was conducted from December 15, 2022, to May 10, 2023. Intervention: Cessation of TKI treatment and follow-up every 3 months. Treatment was restarted in patients with progressive disease (defined by the Response Evaluation Criteria in Solid Tumors 1.1 criteria), detectable ctDNA, or elevated carcinoembryonic antigen (CEA) levels, whichever manifested first, and treatment ceased if all indicators were negative during follow-up surveillance. Main Outcomes and Measures: Progression-free survival (PFS). Secondary end points were objective response rate, time to next treatment, and overall survival. Results: Among the total study sample of 60 participants (median [range] age, 55 [21-75] years; 33 [55%] were female), the median PFS was 18.4 (95% CI, 12.6-24.2) months and the median (range) total treatment break duration was 9.1 (1.5-28.1) months. Fourteen patients (group A) remained in TKI cessation with a median (range) treatment break duration of 20.3 (6.8-28.1) months; 31 patients (group B) received retreatment owing to detectable ctDNA and/or CEA and had a median PFS of 20.2 (95% CI, 12.9-27.4) months with a median (range) total treatment break duration of 8.8 (1.5-20.6) months; and 15 patients (group C) who underwent retreatment with TKIs due to progressive disease had a median PFS of 5.5 (95% CI, 1.5-7.2) months. For all participants, the TKI retreatment response rate was 96%, the median time to next treatment was 29.3 (95% CI, 25.3-35.2) months, and the data for overall survival were immature. Conclusions and Relevance: The findings of this nonrandomized controlled trial suggest that this adaptive de-escalation TKI strategy for patients with NSCLC is feasible in those with no lesions after LCT and a negative ctDNA test result. This might provide a de-escalation treatment strategy guided by ctDNA for the subset of patients with advanced NSCLC. Trial Registration: ClinicalTrials.gov Identifier: NCT03046316.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , ADN Tumoral Circulante , Neoplasias Pulmonares , Inhibidores de Proteínas Quinasas , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Femenino , Masculino , ADN Tumoral Circulante/sangre , ADN Tumoral Circulante/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Persona de Mediana Edad , Anciano , Adulto , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/administración & dosificación , Estudios Prospectivos , Terapia Molecular Dirigida/métodos
4.
Food Chem Toxicol ; 190: 114814, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38876379

RESUMEN

Lead (Pb) is a common environmental neurotoxicant that causes behavioral impairments in both rodents and humans. Isochlorogenic acid A (ICAA), a phenolic acid found in a variety of natural sources such as tea, fruits, vegetables, coffee, plant-based food products, and various medicinal plants, exerts multiple effects, including protective effects on the lungs, livers, and intestines. The objective of this study was to investigate the potential neuroprotective effects of ICAA against Pb-induced neurotoxicity in ICR mice. The results indicate that ICAA attenuates Pb-induced anxiety-like behaviors. ICAA reduced neuroinflammation, ferroptosis, and oxidative stress caused by Pb. ICAA successfully mitigated the Pb-induced deficits in the cholinergic system in the brain through the reduction of ACH levels and the enhancement of AChE and BChE activities. ICAA significantly reduced the levels of ferrous iron and MDA in the brain and prevented decreases in GSH, SOD, and GPx activity. Immunofluorescence analysis demonstrated that ICAA attenuated ferroptosis and upregulated GPx4 expression in the context of Pb-induced nerve damage. Additionally, ICAA downregulated TNF-α and IL-6 expression while concurrently enhancing the activations of Nrf2, HO-1, NQO1, BDNF, and CREB in the brains of mice. The inhibition of BDNF, Nrf2 and GPx4 reversed the protective effects of ICAA on Pb-induced ferroptosis in nerve cells. In general, ICAA ameliorates Pb-induced neuroinflammation, ferroptosis, oxidative stress, and anxiety-like behaviors through the activation of the BDNF/Nrf2/GPx4 pathways.


Asunto(s)
Ansiedad , Ácido Clorogénico , Ferroptosis , Plomo , Enfermedades Neuroinflamatorias , Transducción de Señal , Animales , Masculino , Ratones , Ansiedad/tratamiento farmacológico , Ansiedad/inducido químicamente , Conducta Animal/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ácido Clorogénico/farmacología , Ácido Clorogénico/análogos & derivados , Ferroptosis/efectos de los fármacos , Glutatión Peroxidasa/metabolismo , Plomo/toxicidad , Ratones Endogámicos ICR , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/inducido químicamente , Enfermedades Neuroinflamatorias/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
5.
Brief Bioinform ; 25(4)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38856168

RESUMEN

Nucleic acid-binding proteins (NABPs), including DNA-binding proteins (DBPs) and RNA-binding proteins (RBPs), play important roles in essential biological processes. To facilitate functional annotation and accurate prediction of different types of NABPs, many machine learning-based computational approaches have been developed. However, the datasets used for training and testing as well as the prediction scopes in these studies have limited their applications. In this paper, we developed new strategies to overcome these limitations by generating more accurate and robust datasets and developing deep learning-based methods including both hierarchical and multi-class approaches to predict the types of NABPs for any given protein. The deep learning models employ two layers of convolutional neural network and one layer of long short-term memory. Our approaches outperform existing DBP and RBP predictors with a balanced prediction between DBPs and RBPs, and are more practically useful in identifying novel NABPs. The multi-class approach greatly improves the prediction accuracy of DBPs and RBPs, especially for the DBPs with ~12% improvement. Moreover, we explored the prediction accuracy of single-stranded DNA binding proteins and their effect on the overall prediction accuracy of NABP predictions.


Asunto(s)
Biología Computacional , Proteínas de Unión al ADN , Aprendizaje Profundo , Proteínas de Unión al ARN , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ADN/metabolismo , Biología Computacional/métodos , Redes Neurales de la Computación , Humanos
6.
Adv Mater ; : e2311406, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811026

RESUMEN

Amorphous alloys, also known as metallic glasses, exhibit many advanced mechanical, physical, and chemical properties. Owing to the nonequilibrium nature, their energy states can vary over a wide range. However, the energy relaxation kinetics are very complex and composed of various types that are coupled with each other. This makes it challenging to control the energy state precisely and to study the energy-properties relationship. This brief review introduces the recent progresses on studying the enthalpy relaxation kinetics during isothermal annealing, for example, the observation of two-step relaxation phenomenon, the detection of relaxation unit (relaxun), the key role of large activation entropy in triggering memory effect, the influence of glass energy state on nanocrystallization. Based on the above knowledge, a new strategy is proposed to design a series of amorphous alloys and their composites consisting of nanocrystals and glass matrix with superior functional properties by precisely controlling the nonequilibrium energy states. As the typical examples, Fe-based amorphous alloys with both advanced soft magnetism and good plasticity, Gd-based amorphous/nanocrystalline composites with large magnetocaloric effect, and Fe-based amorphous alloys with high catalytic performance are specifically described.

7.
BMC Health Serv Res ; 24(1): 562, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693514

RESUMEN

BACKGROUND: This study aimed to examine the reporting quality of existing economic evaluations for negotiated glucose-lowering drugs (GLDs) included in China National Reimbursement Drug List (NRDL) using the Consolidated Health Economic Evaluation Reporting Standards 2013 (CHEERS 2013). METHODS: We performed a systematic literature research through 7 databases to identify published economic evaluations for GLDs included in the China NRDL up to March 2021. Reporting quality of identified studies was assessed by two independent reviewers based on the CHEERS checklist. The Kruskal-Wallis test and Mann-Whitney U test were performed to examine the association between reporting quality and characteristics of the identified studies. RESULTS: We have identified 24 studies, which evaluated six GLDs types. The average score rate of the included studies was 77.41% (SD:13.23%, Range 47.62%-91.67%). Among all the required reporting items, characterizing heterogeneity (score rate = 4.17%) was the least satisfied item. Among six parts of CHEERS, results part scored least at 0.55 (score rate = 54.79%) because of the incompleteness of characterizing uncertainty. Results from the Kruskal-Wallis test and Mann-Whitney U test showed that model choice, journal type, type of economic evaluations, and study perspective were associated with the reporting quality of the studies. CONCLUSIONS: There remains room to improve the reporting quality of economic evaluations for GLDs in NRDL. Checklists such as CHEERS should be widely used to improve the reporting quality of economic researches in China.


Asunto(s)
Hipoglucemiantes , China , Humanos , Hipoglucemiantes/economía , Hipoglucemiantes/uso terapéutico , Análisis Costo-Beneficio , Mecanismo de Reembolso/normas , Negociación
8.
Toxicol Res (Camb) ; 13(3): tfae072, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38737339

RESUMEN

Lead (Pb) is a nonessential heavy metal, which can cause many health problems. Isochlorogenic acid A (ICAA), a phenolic acid present in tea, fruits, vegetables, coffee, plant-based food products, and various medicinal plants, exerts multiple effects, including anti-oxidant, antiviral, anti-inflammatory and antifibrotic functions. Thus, the purpose of our study was to determine if ICAA could prevent Pb-induced hepatotoxicity in ICR mice. An evaluation was performed on oxidative stress, inflammation and fibrosis, and related signaling. The results indicate that ICAA attenuates Pb-induced abnormal liver function. ICAA reduced liver fibrosis, inflammation and oxidative stress caused by Pb. ICAA abated Pb-induced fibrosis and decreased inflammatory cytokines interleukin-1ß (IL-1ß) and tumor necrosis factor-alpha (TNF-α). ICAA abrogated reductions in activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Masson staining revealed that ICAA reduced collagen fiber deposition in Pb-induced fibrotic livers. Western blot and immunohistochemistry analyses showed ICAA increased phosphorylated AMP-activated protein kinase (p-AMPK) expression. ICAA also reduced the expression of collagen I, α-smooth muscle actin (α-SMA), phosphorylated extracellular signal-regulated kinase (p-ERK), phosphorylated c-jun N-terminal kinase (p-JNK), p-p38, phosphorylated signal transducer and phosphorylated activator of transcription 3 (p-STAT3), transforming growth factor ß1 (TGF-ß1), and p-Smad2/3 in livers of mice. Overall, ICAA ameliorates Pb-induced hepatitis and fibrosis by inhibiting the AMPK/MAPKs/NF-κB and STAT3/TGF-ß1/Smad2/3 pathways.

9.
J Hazard Mater ; 470: 134293, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38615646

RESUMEN

Imidacloprid enters the water environment through rainfall and causes harm to aquatic crustaceans. However, the potential chronic toxicity mechanism of imidacloprid in crayfish has not been comprehensively studied. In this study, red claw crayfish (Cherax quadricarinatus) were exposed to 11.76, 35.27, or 88.17 µg/L imidacloprid for 30 days, and changes in the physiology and biochemistry, gut microbiota, and transcriptome of C. quadricarinatus and the interaction between imidacloprid, gut microbiota, and genes were studied. Imidacloprid induced oxidative stress and decreased growth performance in crayfish. Imidacloprid exposure caused hepatopancreas damage and decreased serum immune enzyme activity. Hepatopancreatic and plasma acetylcholine decreased significantly in the 88.17 µg/L group. Imidacloprid reduced the diversity of the intestinal flora, increased the abundance of harmful flora, and disrupted the microbiota function. Transcriptomic analysis showed that the number of up-and-down-regulated differentially expressed genes (DEGs) increased significantly with increasing concentrations of imidacloprid. DEG enrichment analyses indicated that imidacloprid inhibits neurotransmitter transduction and immune responses and disrupts energy metabolic processes. Crayfish could alleviate imidacloprid stress by regulating antioxidant and detoxification-related genes. A high correlation was revealed between GST, HSPA1s, and HSP90 and the composition of gut microorganisms in crayfish under imidacloprid stress. This study highlights the negative effects and provides detailed sequencing data from transcriptome and gut microbiota to enhance our understanding of the molecular toxicity of imidacloprid in crustaceans.


Asunto(s)
Astacoidea , Microbioma Gastrointestinal , Neonicotinoides , Nitrocompuestos , Transcriptoma , Contaminantes Químicos del Agua , Animales , Neonicotinoides/toxicidad , Astacoidea/efectos de los fármacos , Astacoidea/genética , Microbioma Gastrointestinal/efectos de los fármacos , Nitrocompuestos/toxicidad , Transcriptoma/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Insecticidas/toxicidad , Estrés Oxidativo/efectos de los fármacos , Hepatopáncreas/efectos de los fármacos , Hepatopáncreas/metabolismo
10.
World J Gastroenterol ; 30(11): 1609-1620, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38617448

RESUMEN

BACKGROUND: Liver cancer is one of the deadliest malignant tumors worldwide. Immunotherapy has provided hope to patients with advanced liver cancer, but only a small fraction of patients benefit from this treatment due to individual differences. Identifying immune-related gene signatures in liver cancer patients not only aids physicians in cancer diagnosis but also offers personalized treatment strategies, thereby improving patient survival rates. Although several methods have been developed to predict the prognosis and immunotherapeutic efficacy in patients with liver cancer, the impact of cell-cell interactions in the tumor microenvironment has not been adequately considered. AIM: To identify immune-related gene signals for predicting liver cancer prognosis and immunotherapy efficacy. METHODS: Cell grouping and cell-cell communication analysis were performed on single-cell RNA-sequencing data to identify highly active cell groups in immune-related pathways. Highly active immune cells were identified by intersecting the highly active cell groups with B cells and T cells. The significantly differentially expressed genes between highly active immune cells and other cells were subsequently selected as features, and a least absolute shrinkage and selection operator (LASSO) regression model was constructed to screen for diagnostic-related features. Fourteen genes that were selected more than 5 times in 10 LASSO regression experiments were included in a multivariable Cox regression model. Finally, 3 genes (stathmin 1, cofilin 1, and C-C chemokine ligand 5) significantly associated with survival were identified and used to construct an immune-related gene signature. RESULTS: The immune-related gene signature composed of stathmin 1, cofilin 1, and C-C chemokine ligand 5 was identified through cell-cell communication. The effectiveness of the identified gene signature was validated based on experimental results of predictive immunotherapy response, tumor mutation burden analysis, immune cell infiltration analysis, survival analysis, and expression analysis. CONCLUSION: The findings suggest that the identified gene signature may contribute to a deeper understanding of the activity patterns of immune cells in the liver tumor microenvironment, providing insights for personalized treatment strategies.


Asunto(s)
Cofilina 1 , Neoplasias Hepáticas , Humanos , Ligandos , Estatmina , Pronóstico , Inmunoterapia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Comunicación Celular , Quimiocinas CC , Microambiente Tumoral/genética
11.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(2): 147-153, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38686709

RESUMEN

Objective To screen out the biomarkers linked to prognosis of breast invasive carcinoma based on the analysis of transcriptome data by random forest (RF),extreme gradient boosting (XGBoost),light gradient boosting machine (LightGBM),and categorical boosting (CatBoost). Methods We obtained the expression data of breast invasive carcinoma from The Cancer Genome Atlas and employed DESeq2,t-test,and Cox univariate analysis to identify the differentially expressed protein-coding genes associated with survival prognosis in human breast invasive carcinoma samples.Furthermore,RF,XGBoost,LightGBM,and CatBoost models were established to mine the protein-coding gene markers related to the prognosis of breast invasive cancer and the model performance was compared.The expression data of breast cancer from the Gene Expression Omnibus was used for validation. Results A total of 151 differentially expressed protein-coding genes related to survival prognosis were screened out.The machine learning model established with C3orf80,UGP2,and SPC25 demonstrated the best performance. Conclusions Three protein-coding genes (UGP2,C3orf80,and SPC25) were screened out to identify breast invasive carcinoma.This study provides a new direction for the treatment and diagnosis of breast invasive carcinoma.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama , Aprendizaje Automático , Humanos , Neoplasias de la Mama/genética , Femenino , Biomarcadores de Tumor/genética , Pronóstico , Perfilación de la Expresión Génica
12.
Anal Bioanal Chem ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647693

RESUMEN

A highly efficient ratiometric electrochemiluminescence (ECL) immunoassay was explored by bidirectionally regulating the ECL intensity of two luminophors. The immunoassay was conducted in a split-type mode consisting of an ECL detection procedure and a sandwich immunoreaction. The ECL detection was executed using a dual-disk glassy carbon electrode modified with two potential-resolved luminophors (g-C3N4-Ag and Ru-MOF-Ag nanocomposites), and the sandwich immunoreaction using glucose oxidase (GOx)-modified SiO2 nanospheres as labels was carried out in a 96-well plate. The Ag nanoparticles (NPs) acted as bifunctional units both for triggering the resonance energy transfer (RET) with g-C3N4 and for accelerating the electron transfer rate of the Ru-MOF-Ag ECL reaction. When the H2O2 catalyzed by GOx in the 96-well plate was transferred to the dual-disk glass carbon electrode, the doped Ag NPs in the two luminophors could be etched, thus destroying the RET between C3N4 and the accelerated reaction to Ru-MOF, resulting in an opposite trend in the ECL signal outputted from the dual disks. Using the ratio of the two signals for quantification, the constructed immunosensor for a model target, i.e. myoglobin, exhibited a low detection limit of 4.7 × 10-14 g/mL. The ingenious combination of ECL ratiometry, bifunctional Ag NPs, and a split-type strategy effectively reduces environmental and human errors, offering a more precise and sensitive analysis for complex samples.

13.
Nat Commun ; 15(1): 2797, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38555355

RESUMEN

Silent information regulator 2 (Sir2) proteins typically catalyze NAD+-dependent protein deacetylation. The recently identified bacterial Sir2 domain-containing protein, defense-associated sirtuin 2 (DSR2), recognizes the phage tail tube and depletes NAD+ to abort phage propagation, which is counteracted by the phage-encoded DSR anti-defense 1 (DSAD1), but their molecular mechanisms remain unclear. Here, we determine cryo-EM structures of inactive DSR2 in its apo form, DSR2-DSAD1 and DSR2-DSAD1-NAD+, as well as active DSR2-tube and DSR2-tube-NAD+ complexes. DSR2 forms a tetramer with its C-terminal sensor domains (CTDs) in two distinct conformations: CTDclosed or CTDopen. Monomeric, rather than oligomeric, tail tube proteins preferentially bind to CTDclosed and activate Sir2 for NAD+ hydrolysis. DSAD1 binding to CTDopen allosterically inhibits tube binding and tube-mediated DSR2 activation. Our findings provide mechanistic insight into DSR2 assembly, tube-mediated DSR2 activation, and DSAD1-mediated inhibition and NAD+ substrate catalysis in bacterial DSR2 anti-phage defense systems.


Asunto(s)
Sirtuinas , Sirtuinas/metabolismo , NAD/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2 , Hidrólisis
14.
ACS Appl Mater Interfaces ; 16(12): 14626-14632, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38477624

RESUMEN

As one of the interesting signaling mechanisms, the in situ growth reaction on a photoelectrode has proven its powerful potential in photoelectrochemical (PEC) bioanalysis. However, the specific interaction between the signaling species with the photoactive materials limits the general application of the signal mechanism. Herein, on the basis of an in situ growth reaction on a photoelectrode of single-atom-based photoactive material, a general PEC immunoassay was developed in a split-type mode consisting of the immunoreaction and PEC detection procedure. Specifically, a single-atom photoactive material that incorporates Fe atoms into layered Bi4O5I2 (Bi4O5I2-Fe SAs) was used as a photoelectrode for PEC detection. The sandwich immunoreaction was performed in a well of a 96-well plate using Ag nanoparticles (Ag NPs) as signal tracers. In the PEC detection procedure, the Ag+ converted from Ag NPs were transferred onto the surface of the Bi4O5I2-Fe SAs photoelectrode and thereafter AgI was generated on the Bi4O5I2-Fe SAs in situ to form a heterojunction through the reaction of Ag+ with Bi4O5I2-Fe SAs. The formation of heterojunction greatly promoted the electro-hole separation, boosting the photocurrent response. Exemplified by myoglobin (Myo) as the analyte, the immunosensor achieved a wide linear range from 1.0 × 10-11 to 5.0 × 10-8 g mL-1 with a detection limit of 3.5 × 10-12 g mL-1. This strategy provides a general PEC immunoassay for disease-related proteins, as well as extends the application scope of in situ growth reaction in PEC analysis.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Técnicas Biosensibles/métodos , Inmunoensayo/métodos , Plata , Mioglobina , Técnicas Electroquímicas/métodos , Límite de Detección
15.
mSystems ; 9(4): e0105523, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38501864

RESUMEN

Plant-associated diazotrophs strongly relate to plant nitrogen (N) supply and growth. However, our knowledge of diazotrophic community assembly and microbial N metabolism in plant microbiomes is largely limited. Here we examined the assembly and temporal dynamics of diazotrophic communities across multiple compartments (soils, epiphytic and endophytic niches of root and leaf, and grain) of three cereal crops (maize, wheat, and barley) and identified the potential N-cycling pathways in phylloplane microbiomes. Our results demonstrated that the microbial species pool, influenced by site-specific environmental factors (e.g., edaphic factors), had a stronger effect than host selection (i.e., plant species and developmental stage) in shaping diazotrophic communities across the soil-plant continuum. Crop diazotrophic communities were dominated by a few taxa (~0.7% of diazotrophic phylotypes) which were mainly affiliated with Methylobacterium, Azospirillum, Bradyrhizobium, and Rhizobium. Furthermore, eight dominant taxa belonging to Azospirillum and Methylobacterium were identified as keystone diazotrophic taxa for three crops and were potentially associated with microbial network stability and crop yields. Metagenomic binning recovered 58 metagenome-assembled genomes (MAGs) from the phylloplane, and the majority of them were identified as novel species (37 MAGs) and harbored genes potentially related to multiple N metabolism processes (e.g., nitrate reduction). Notably, for the first time, a high-quality MAG harboring genes involved in the complete denitrification process was recovered in the phylloplane and showed high identity to Pseudomonas mendocina. Overall, these findings significantly expand our understanding of ecological drivers of crop diazotrophs and provide new insights into the potential microbial N metabolism in the phyllosphere.IMPORTANCEPlants harbor diverse nitrogen-fixing microorganisms (i.e., diazotrophic communities) in both belowground and aboveground tissues, which play a vital role in plant nitrogen supply and growth promotion. Understanding the assembly and temporal dynamics of crop diazotrophic communities is a prerequisite for harnessing them to promote plant growth. In this study, we show that the site-specific microbial species pool largely shapes the structure of diazotrophic communities in the leaves and roots of three cereal crops. We further identify keystone diazotrophic taxa in crop microbiomes and characterize potential microbial N metabolism pathways in the phyllosphere, which provides essential information for developing microbiome-based tools in future sustainable agricultural production.


Asunto(s)
Microbiota , Microbiota/genética , Agricultura , Suelo/química , Nitrógeno/análisis , Productos Agrícolas/metabolismo , Desarrollo de la Planta
16.
Brief Bioinform ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38385873

RESUMEN

Lysine lactylation (Kla) is a newly discovered posttranslational modification that is involved in important life activities, such as glycolysis-related cell function, macrophage polarization and nervous system regulation, and has received widespread attention due to the Warburg effect in tumor cells. In this work, we first design a natural language processing method to automatically extract the 3D structural features of Kla sites, avoiding potential biases caused by manually designed structural features. Then, we establish two Kla prediction frameworks, Attention-based feature fusion Kla model (ABFF-Kla) and EBFF-Kla, to integrate the sequence features and the structure features based on the attention layer and embedding layer, respectively. The results indicate that ABFF-Kla and Embedding-based feature fusion Kla model (EBFF-Kla), which fuse features from protein sequences and spatial structures, have better predictive performance than that of models that use only sequence features. Our work provides an approach for the automatic extraction of protein structural features, as well as a flexible framework for Kla prediction. The source code and the training data of the ABFF-Kla and the EBFF-Kla are publicly deposited at: https://github.com/ispotato/Lactylation_model.


Asunto(s)
Lisina , Procesamiento de Lenguaje Natural , Secuencia de Aminoácidos , Dominios Proteicos , Procesamiento Proteico-Postraduccional
17.
Fish Shellfish Immunol ; 147: 109437, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38360192

RESUMEN

Antimicrobial peptides (AMPs), which are widely present in animals and plants, have a broad distribution, strong broad-spectrum antibacterial activity, low likelihood of developing drug resistance, high thermal stability and antiviral properties. The present study investigated the effects of adding AMPs from Hermetia illucens larvae on the growth performance, muscle composition, antioxidant capacity, immune response, gene expression, antibacterial ability and intestinal microbiota of Cherax quadricarinatus (red claw crayfish). Five experimental diets were prepared by adding 50 (M1), 100 (M2), 150 (M3) and 200 (M4) mg/kg of crude AMP extract from H. illucens larvae to the basal diet feed, which was also used as the control (M0). After an eight-week feeding experiment, it was discovered that the addition of 100-150 mg/kg of H. illucens larvae AMPs to the feed significantly improved the weight gain rate and specific growth rate of C. quadricarinatus. Furthermore, the addition of H. illucens larvae AMPs to the feed had no significant effect on the moisture content, crude protein, crude fat and ash content of the C. quadricarinatus muscle. The addition of 100-150 mg/kg of H. illucens larvae AMPs in the feed also increased the antioxidant capacity, nonspecific immune enzyme activity and related gene expression levels in C. quadricarinatus, thereby enhancing their antioxidant capacity and immune function. The H. illucens larvae AMPs improved the structure and composition of the intestinal microbiota of C. quadricarinatus, increasing the microbial community diversity of the crayfish gut. Finally, the addition of 100-150 mg/kg of H. illucens larvae AMPs in the feed enhanced the resistance of C. quadricarinatus against Aeromonas hydrophila, improving the survival rate of the crayfish. Based on the aforementioned findings, it is recommended that H. illucens larvae AMPs be incorporated into the C. quadricarinatus feed at a concentration of 100-150 mg/kg.


Asunto(s)
Dípteros , Microbioma Gastrointestinal , Animales , Larva/microbiología , Astacoidea , Aeromonas hydrophila/genética , Péptidos Antimicrobianos , Antioxidantes , Dieta , Expresión Génica , Antibacterianos
18.
Phytomedicine ; 126: 155459, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417243

RESUMEN

BACKGROUND: Osteosarcoma is the most prevalent malignant bone tumour with a poor prognosis. Shikonin (SHK) is derived from the traditional Chinese medicine Lithospermum that has been extensively studied for its notable anti-tumour effects, including for osteosarcoma. However, its application has certain limitations. Valproic acid (VPA) is a histone deacetylase inhibitor (HDACI) that has recently been employed as an adjunctive therapeutic agent that allows chromatin to assume a more relaxed state, thereby enhancing anti-tumour efficacy. PURPOSE: This study was aimed to investigate the synergistic anti-tumour efficacy of SHK in combination with VPA and elucidate its underlying mechanism. METHODS/STUDY DESIGN: CCK-8 assays were utilized to calculate the combination index. Additional assays, including colony formation, acridine orange/ethidium bromide double fluorescent staining, and flow cytometry, were employed to evaluate the effects on osteosarcoma cells. Wound healing and transwell assays were utilized to assess cell mobility. RNA sequencing, PCR, and Western blot analyses were conducted to uncover the underlying mechanism. Rescue experiments were performed to validate the mechanism of apoptotic induction. The impact of SHK and VPA combination treatment on primary osteosarcoma cells was also assessed. Finally, in vivo experiments were conducted to validate its anti-tumour effects and mechanism. RESULTS: The combination of SHK and VPA synergistically inhibited the proliferation and migration of osteosarcoma cells in vitro and induced apoptosis in these cells. Through a comprehensive analysis involving RNA sequencing, PCR, Western blot, and rescue experiments, we have substantiated our hypothesis that the combination of SHK and VPA induced apoptosis via the ROS-EGR1-Bax axis. Importantly, our in vivo experiments corroborated these findings, demonstrating the potential of the SHK and VPA combination as a promising therapeutic approach for osteosarcoma. CONCLUSION: The combination of SHK and VPA exerted an anti-tumour effect by inducing apoptosis through the ROS-EGR1-Bax pathway. Repurposing the old drug VPA demonstrated its effectiveness as an adjunctive therapeutic agent for SHK, enhancing its anti-tumour efficacy and revealing its potential value. Furthermore, our study expanded the application of natural compounds in the anti-tumour field and overcame some of their limitations through combination therapy. Finally, we enhanced the understanding of the mechanistic pathways linking reactive oxygen species (ROS) accumulation and apoptosis in osteosarcoma cells. Additionally, we elucidated the role of EGR1 in osteosarcoma cells, offering novel strategies and concepts for the treatment of osteosarcoma.


Asunto(s)
Neoplasias Óseas , Naftoquinonas , Osteosarcoma , Humanos , Ácido Valproico/farmacología , Ácido Valproico/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Proteína X Asociada a bcl-2 , Apoptosis , Osteosarcoma/patología , Línea Celular Tumoral , Neoplasias Óseas/metabolismo , Proliferación Celular , Proteína 1 de la Respuesta de Crecimiento Precoz/farmacología
19.
Angew Chem Int Ed Engl ; 63(14): e202317922, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38366167

RESUMEN

Carbon coating layers have been found to improve the catalytic performance of transition metals, which is usually explained as an outcome of electronic synergistic effect. Herein we reveal that the defective graphitic carbon, with a unique interlayer gap of 0.342 nm, can be a highly selective natural molecular sieve. It allows efficient diffusion of hydrogen molecules or radicals both along the in-plane and out-of-plane direction, but sterically hinders the diffusion of molecules with larger kinetic diameter (e.g., CO and O2) along the in-plane direction. As a result, poisonous species lager than 0.342 nm are sieved out, even when their adsorption on the metal is thermodynamically strong; at the same time, the interaction between H2 and the metal is not affected. This natural molecular sieve provides a very chance for constructing robust metal catalysts for hydrogen-relevant processes, which are more tolerant to chemical or electrochemical oxidation or CO-relevant poisoning.

20.
Fish Shellfish Immunol ; 145: 109363, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38185392

RESUMEN

Astaxanthin is one of the important immunopotentators in aquaculture. However, little is known about the physiological changes and stress resistance effects of astaxanthin in marine gastropods. In this study, the effects of different astaxanthin concentrations (0, 25, 50, 75, and 100 mg/kg) on the growth, muscle composition, immune function, and resistance to ammonia stress in Babylonia areolata were investigated after three months of rearing. With the increase in astaxanthin content, the weight gain rate (WGR), specific growth rate (SGR), and survival rate (SR) of B. areolata showed an increasing trend. The 75-100 mg/kg group was significantly higher than the control group (0 mg/kg). There was no significant difference in the flesh shell ratio (FSR), viscerosomatic index (VSI), and soft tissue index (STI) of the experimental groups. Astaxanthin (75 mg/kg) significantly increased muscle crude protein content and increased hepatopancreas alkaline phosphatase (AKP), superoxide dismutase (SOD), and catalase (CAT) activity. Astaxanthin (75-100 mg/kg) significantly increased the total antioxidant capacity (T-AOC) and acid phosphatase (ACP) of the hepatopancreas and decreased the malondialdehyde (MDA) content of B. areolata. Astaxanthin significantly induced the expression levels of functional genes, such as SOD, Cu/ZnSOD, ferritin, ACP, and CYC in hepatopancreas and increased the survival rate of B. areolata under ammonia stress. The addition of 75-100 mg/kg astaxanthin to the feed improved the growth performance, muscle composition, immune function, and resistance to ammonia stress of B. areolata.


Asunto(s)
Amoníaco , Gastrópodos , Animales , Dieta , Antioxidantes/metabolismo , Gastrópodos/metabolismo , Inmunidad Innata , Expresión Génica , Músculos/metabolismo , Superóxido Dismutasa/metabolismo , Alimentación Animal/análisis , Suplementos Dietéticos , Xantófilas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...