Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 34(30): e2200946, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35635443

RESUMEN

Graphene is known as a superstiff and extremely strong material. Hence, applying strains greater than 1% to graphene and simultaneously measuring changes in its physical properties has been challenging because of the limited methodologies for measuring both high strain and other physical properties. Here, Raman scattering measurement of suspended graphene under extremely high biaxial strain as large as 6.1% using an atomic force microscopy (AFM)-Raman spectroscopy measurement tool is reported. Nanoindentation is performed using AFM tips machined to have a flat top and a hole shape, resulting in a strained graphene area sufficiently large to enable the acquisition of a Raman signal. At the same time, the laser light is focused on the strained flat area of the graphene membrane. The Raman signals of the G and 2D bands of graphene are redshifted by 282 and 684 cm-1 , respectively, which is unprecedented for graphene. This measurement technique provides an effective methodology to measure variations in the physical properties of atomically thin materials under superhigh strain.

2.
Nanomaterials (Basel) ; 9(2)2019 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-30791433

RESUMEN

In the present study, dry friction and wear properties of atomically thin CVD-grown graphene and MoS2 films on SiO2/Si substrates were compared at low (72 MPa) and high (378 MPa) contact pressures. Analysis of atomic force microscopy images of these films verified that the MoS2 films, which were directly grown on the SiO2/Si substrates, had clean surfaces and made conformal contacts with the substrates. In contrast, the graphene film showed many contaminants on its surface and was loosely bonded with its SiO2/Si substrate due to its wet transfer from a Cu foil to the substrate. The MoS2 film exhibited friction and wear properties superior to those of the graphene film both at low and high contact pressures. We found that the clean sliding surface and strong bonding with SiO2/Si were the main causes of the superiority of the MoS2 film compared to the graphene film. Mild wear occurred in a layer-by-layer fashion at low contact pressure for the MoS2 film. At high contact pressure, severe wear occurred due to failure at the boundary between the MoS2 films and the underlying substrates. At both contact pressures, friction did not increase immediately after the removal of the MoS2 film from the SiO2/Si substrate because the film transferred onto the counter sliding surface and served as a lubricant.

3.
Small ; 15(11): e1804885, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30730094

RESUMEN

The finite energy band-offset that appears between band structures of employed materials in a broken-gap heterojunction exhibits several interesting phenomena. Here, by employing a black phosphorus (BP)/rhenium disulfide (ReS2 ) heterojunction, the tunability of the BP work function (Φ BP ) with variation in flake thickness is exploited in order to demonstrate that a BP-based broken-gap heterojunction can manifest diverse current-transport characteristics such as gate tunable rectifying p-n junction diodes, Esaki diodes, backward-rectifying diodes, and nonrectifying devices as a consequence of diverse band-bending at the heterojunction. Diversity in band-bending near heterojunction is attributed to change in the Fermi level difference (Δ) between BP and ReS2 sides as a consequence of Φ BP modulation. No change in the current transport characteristics in several devices with fixed Δ also provides further evidence that current-transport is substantially impacted by band-bending at the heterojunction. Optoelectronic experiments on the Esaki diode and the p-n junction diode provide experimental evidence of band-bending diversity. Additionally, the p+ -n-p junction comprising BP (38 nm)/ReS2 /BP(5.8 nm) demonstrates multifunctionality of binary and ternary inverters as well as exhibiting the behavior of a bipolar junction transistor with common-emitter current gain up to 50.

4.
ACS Appl Mater Interfaces ; 11(8): 8266-8275, 2019 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-30698000

RESUMEN

The broken-gap (type III) van der Waals heterojunction is of particular interest, as there is no overlap between energy bands of its two stacked materials. Despite several studies on straddling-gap (type I) and staggered-gap (type II) vdW heterojunctions, comprehensive understanding of current transport and optoelectronic effects in a type-III heterojunction remains elusive. Here, we report gate-tunable current rectifying characteristics in a black phosphorus (BP)/rhenium disulfide (ReS2) type-III p-n heterojunction diode. Current transport in this heterojunction was modeled using the Simmons approximation through direct tunneling and Fowler-Nordheim tunneling in lower- and higher-bias regimes, respectively. We showed that a p-n diode based on a type-III heterojunction is mainly governed by tunneling-mediated transport, but that transport in a type-I p-n heterojunction is dominated by majority carrier diffusion in the higher-bias regime. Upon illumination with a 532 nm wavelength laser, the BP/ReS2 type-III p-n heterojunction showed a photo responsivity of 8 mA/W at a laser power as high as 100 µW and photovoltaic energy conversion with an external peak quantum efficiency of 0.3%. Finally, we demonstrated a binary inverter consisting of BP p-channel and ReS2 n-channel thin film transistors for logic applications.

5.
Adv Mater ; 30(25): e1706480, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29709083

RESUMEN

Increasing the mechanical durability of large-area polycrystalline single-atom-thick materials is a necessary step toward the development of practical and reliable soft electronics based on these materials. Here, it is shown that the surface assembly of organosilane by weak epitaxy forms nanometer-thick organic patches on a monolayer graphene surface and dramatically increases the material's resistance to harsh postprocessing environments, thereby increasing the number of ways in which graphene can be processed. The nanopatched graphene with the improved mechanical durability enables stable operation when used as transparent electrodes of wearable strain sensors. Also, the nanopatched graphene applied as an electrode modulates the molecular orientation of deposited organic semiconductor layers, and yields favorable nominal charge injection for organic transistors. These results demonstrate the potential for use of self-assembled organic nanopatches in graphene-based soft electronics.

6.
Nanoscale ; 10(3): 1056-1062, 2018 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-29266157

RESUMEN

Direct contacts of a metal with atomically thin two-dimensional (2D) transition metal dichalcogenide (TMDC) semiconductors have been found to suppress device performance by producing a high contact resistance. NbS2 is a 2D TMDC and a conductor. It is expected to form ohmic contacts with 2D semiconductors because of its high work function and the van der Waals interface it forms with the semiconductor, with such an interface resulting in weak Fermi level pinning. Despite the usefulness of NbS2 as an electrode, previous synthesis methods could not control the thickness, uniformity, and shape of the NbS2 film and hence could not find practical applications in electronics. Here, we report a patternable method for carrying out the synthesis of NbS2 films in which the number of NbS2 layers formed over a large area was successfully controlled, which is necessary for the production of customized electrodes. The synthesized NbS2 films were shown to be highly transparent and uniform in thickness and conductivity over the large area. Furthermore, the synthesized NbS2 showed half the contact resistance than did the molybdenum metal in MoS2 field effect transistors (FETs) on a large transparent quartz substrate. The MoS2 device with NbS2 showed an electron mobility as high as 12.7 cm2 V-1 s-1, which was three times higher than that found for the corresponding molybdenum-contacted MoS2 device. This result showed the high potential of the NbS2 thin film as a transparent electrode for 2D transition metal dichalcogenide (TMDC) semiconductors with low contact resistance.

7.
Langmuir ; 33(14): 3367-3372, 2017 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-28287742

RESUMEN

In a nanowire dispersed in liquid droplets, the interplay between the surface tension of the liquid and the elasticity of the nanowire determines the final morphology of the bent or buckled nanowire. Here, we investigate the fabrication of a silver nanowire ring generated as the nanowire encapsulated inside of fine droplets. We used a hybrid aerodynamic and electrostatic atomization method to ensure the generation of droplets with scalable size in the necessary regime for ring formation. We analytically calculate the compressive force of the droplet driven by surface tension as the key mechanism for the self-assembly of ring structures. Thus, for potential large-scale manufacturing, the droplet size provides a convenient parameter to control the realization of ring structures from nanowires.

8.
Nanoscale ; 8(28): 13781-9, 2016 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-27381252

RESUMEN

We describe an efficient chemical vapor deposition (CVD) method for synthesizing graphene with a single crystal orientation on the whole surface of a copper (Cu) foil. We specifically synthesized graphene on the inner surface of a folded Cu foil, on which small holes were made for regulating the permeation and adsorption of the gases used for the synthesis. We compared the results of this method, which we call a "hole-pocket" method, with previously developed methods involving traditional synthesis on an open Cu foil and a Cu "pita-pocket". From these comparisons, we found the orientation of recrystallized Cu to depend on the shape of the Cu foil. Our hole-pocket method did not require treatment of the Cu surface with a complicated process to reduce the density of nucleation seeds in order to synthesize large hexagonal graphene grains, nor did it require the use of a single-crystalline substrate because methane passing through holes on the upper side of the hole-pocket slowly decomposed into carbon atoms and the control of the evaporation of Cu inside the foil pocket helped induce a transformation of the Cu domains to Cu(111). The current hole-pocket method resulted in domains that were both large, ranging from 2-5 mm in size, and oriented in the same manner. By extending the synthesis time, we were able to obtain continuous large-area films of single-crystalline orientation on the whole surface with dimensions of several centimeters.

9.
Adv Mater ; 27(35): 5223-9, 2015 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-26257314

RESUMEN

By plasma-enhanced chemical vapor deposition, a molybdenum disulfide (MoS2 ) thin film is synthesized directly on a wafer-scale plastic substrate at below 300 °C. The carrier mobility of the films is 3.74 cm(2) V(-1) s(-1) . Also, humidity is successfully detected with MoS2 -based sensors fabricated on the flexible substrate, which reveals its potential for flexible sensing devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...