Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
bioRxiv ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39005318

RESUMEN

Recent years have seen intense interest in the development of point-of-care nucleic acid diagnostic technologies to address the scaling limitations of laboratory-based approaches. Chief among these are combinations of isothermal amplification approaches with CRISPR-based detection and readouts of target products. Here, we contribute to the growing body of rapid, programmable point-of-care pathogen tests by developing and optimizing a one-pot NASBA-Cas13a nucleic acid detection assay. This test uses the isothermal amplification technique NASBA to amplify target viral nucleic acids, followed by Cas13a-based detection of amplified sequences. We first demonstrate an in-house formulation of NASBA that enables optimization of individual NASBA components. We then present design rules for NASBA primer sets and LbuCas13a guide RNAs for fast and sensitive detection of SARS-CoV-2 viral RNA fragments, resulting in 20 - 200 aM sensitivity without any specialized equipment. Finally, we explore the combination of high-throughput assay condition screening with mechanistic ordinary differential equation modeling of the reaction scheme to gain a deeper understanding of the NASBA-Cas13a system. This work presents a framework for developing a mechanistic understanding of reaction performance and optimization that uses both experiments and modeling, which we anticipate will be useful in developing future nucleic acid detection technologies.

2.
bioRxiv ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38712145

RESUMEN

Cell-free systems are powerful synthetic biology technologies because of their ability to recapitulate sensing and gene expression without the complications of living cells. Cell-free systems can perform even more advanced functions when genetic circuits are incorporated as information processing components. Here we expand cell-free biosensing by engineering a highly specific isothermal signal amplification circuit called polymerase strand recycling (PSR) that leverages T7 RNA polymerase off-target transcription to recycle nucleic acid inputs within DNA strand displacement circuits. We develop design rules for PSR circuit components and use these rules to construct modular biosensors that can directly sense different RNA targets with limits of detection in the nM range and high specificity. We then use PSR for signal amplification within allosteric transcription factor-based biosensors for small molecule detection. We use a double equilibrium model of transcription factor:DNA and transcription factor:ligand binding interactions to predict biosensor sensitivity enhancement by PSR, and then demonstrate this approach experimentally by achieving 3.6-4.6-fold decreases in biosensor EC50 to sub micromolar ranges. We believe this work expands the current capabilities of cell-free circuits by incorporating PSR, which we anticipate will have a wide range of uses within biotechnology.

3.
JOR Spine ; 7(1): e1297, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38222801

RESUMEN

Background: Intervertebral disc degeneration is associated with low back pain, which is a leading cause of disability. While the precise causes of disc degeneration are unknown, inadequate nutrient and metabolite transport through the cartilage endplate (CEP) may be one important factor. Prior work shows that CEP transport properties depend on the porosity of the CEP matrix, but little is known about the role of CEP characteristics that could influence transport properties independently from porosity. Here, we show that CEP transport properties depend on the extent of non-enzymatic glycation of the CEP matrix. Methods and Results: Using in vitro ribosylation to induce non-enzymatic glycation and promote the formation of advanced glycation end products, we found that ribosylation reduced glucose partition coefficients in human cadaveric lumbar CEP tissues by 10.7%, on average, compared with donor- and site-matched CEP tissues that did not undergo ribosylation (p = 0.04). These reductions in glucose uptake were observed in the absence of differences in CEP porosity (p = 0.89) or in the amounts of sulfated glycosaminoglycans (sGAGs, p = 0.47) or collagen (p = 0.61). To investigate whether ribosylation altered electrostatic interactions between fixed charges on the sGAG molecules and the mobile free ions, we measured the charge density in the CEP matrix using equilibrium partitioning of a cationic contrast agent using micro-computed tomography. After contrast enhancement, mean X-ray attenuation was 11.9% lower in the CEP tissues that had undergone ribosylation (p = 0.02), implying the CEP matrix was less negatively charged. Conclusions: Taken together, these findings indicate that non-enzymatic glycation negatively impacts glucose transport in the CEP independent of matrix porosity or sGAG content and that the effects may be mediated by alterations to matrix charge density.

4.
ACS Synth Biol ; 12(10): 2909-2921, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37699423

RESUMEN

As the field of synthetic biology expands, the need to grow and train science, technology, engineering, and math (STEM) practitioners is essential. However, the lack of access to hands-on demonstrations has led to inequalities of opportunity and practice. In addition, there is a gap in providing content that enables students to make their own bioengineered systems. To address these challenges, we develop four shelf-stable cell-free biosensing educational modules that work by simply adding water and DNA to freeze-dried crude extracts of non-pathogenic Escherichia coli. We introduce activities and supporting curricula to teach the structure and function of the lac operon, dose-responsive behavior, considerations for biosensor outputs, and a "build-your-own" activity for monitoring environmental contaminants in water. We piloted these modules with K-12 teachers and 130 high-school students in their classrooms─and at home─without professional laboratory equipment. This work promises to catalyze access to interactive synthetic biology education opportunities.


Asunto(s)
Biología Sintética , Calidad del Agua , Humanos , Biología Sintética/educación
5.
Nat Chem Biol ; 18(4): 385-393, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35177837

RESUMEN

Cell-free biosensors are powerful platforms for monitoring human and environmental health. Here, we expand their capabilities by interfacing them with toehold-mediated strand displacement circuits, a dynamic DNA nanotechnology that enables molecular computation through programmable interactions between nucleic acid strands. We develop design rules for interfacing a small molecule sensing platform called ROSALIND with toehold-mediated strand displacement to construct hybrid RNA-DNA circuits that allow fine-tuning of reaction kinetics. We use these design rules to build 12 different circuits that implement a range of logic functions (NOT, OR, AND, IMPLY, NOR, NIMPLY, NAND). Finally, we demonstrate a circuit that acts like an analog-to-digital converter to create a series of binary outputs that encode the concentration range of the molecule being detected. We believe this work establishes a pathway to create 'smart' diagnostics that use molecular computations to enhance the speed and utility of biosensors.


Asunto(s)
Técnicas Biosensibles , ADN , ADN/metabolismo , Humanos , Nanotecnología , ARN , Recombinación Genética
6.
Methods Mol Biol ; 2433: 325-342, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34985754

RESUMEN

ROSALIND (RNA Output Sensors Activated by Ligand Induction) is an in vitro biosensing system that detects small molecules using regulated transcription reactions. It consists of three key components: (1) RNA polymerases, (2) allosteric protein transcription factors, and (3) synthetic DNA transcription templates that together regulate the synthesis of a fluorescence-activating RNA aptamer. The system can detect a wide range of chemicals including antibiotics, small molecules, and metal ions. We have demonstrated that ROSALIND can be lyophilized and transported at ambient conditions for water testing on-site. Here, we describe how to set up a ROSALIND reaction for detecting various chemical contaminants in water using a model transcription factor as well as how to build a new ROSALIND sensor.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Aptámeros de Nucleótidos/química , Metales , ARN/metabolismo , Factores de Transcripción/metabolismo
7.
Materials (Basel) ; 14(13)2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34279299

RESUMEN

The precursor prepared by co-precipitation method was sintered at various temperatures to synthesize crystalline manganese tungstate (MnWO4). Sintered MnWO4 showed the best crystallinity at a sintering temperature of 800 °C. Rare earth ion (Dysprosium; Dy3+) was added when preparing the precursor to enhance the magnetic and luminescent properties of crystalline MnWO4 based on these sintering temperature conditions. As the amount of rare earth ions was changed, the magnetic and luminescent characteristics were enhanced; however, after 0.1 mol.%, the luminescent characteristics decreased due to the concentration quenching phenomenon. In addition, a composite was prepared by mixing MnWO4 powder, with enhanced magnetism and luminescence properties due to the addition of dysprosium, with epoxy. To one of the two prepared composites a magnetic field was applied to induce alignment of the MnWO4 particles. Aligned particles showed stronger luminescence than the composite sample prepared with unsorted particles. As a result of this, it was suggested that it can be used as phosphor and a photosensitizer by utilizing the magnetic and luminescent properties of the synthesized MnWO4 powder with the addition of rare earth ions.

8.
J Mech Behav Biomed Mater ; 111: 103991, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32823075

RESUMEN

Chitons are herbivorous invertebrates that use rows of ultrahard magnetite-based teeth connected to a flexible belt (radula) to rasp away algal deposits growing on and within rocky outcrops along coastlines around the world. Each tooth is attached to the radula by an organic structure (stylus) that provides mechanical support during feeding. However, the underlying structures within the stylus, and their subsequent function within the chiton have yet to be investigated. Here, we investigate the macrostructural architecture, the regional material and elemental distribution and subsequent nano-mechanical properties of the stylus from the Northern Pacific dwelling Cryptochiton stelleri. Using a combination of µ-CT imaging, optical and electron microscopy, as well as elemental analysis, we reveal that the stylus is a highly contoured tube, mainly composed of alpha-chitin fibers, with a complex density distribution. Nanoindentation reveals regiospecific and graded mechanical properties that can be correlated with both the elemental composition and material distribution. Finite element modeling shows that the unique macroscale architecture, material distribution and elemental gradients have been optimized to preserve the structural stability of this flexible, yet robust functionally-graded fiber-reinforced composite tube, providing effective function during rasping. Understanding these complex fiber-based structures offers promising blueprints for lightweight, multifunctional and integrated materials.


Asunto(s)
Poliplacóforos , Diente , Animales , Óxido Ferrosoférrico , Microscopía Electrónica
9.
Nat Biotechnol ; 38(12): 1451-1459, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32632301

RESUMEN

Lack of access to safe drinking water is a global problem, and methods to reliably and easily detect contaminants could be transformative. We report the development of a cell-free in vitro transcription system that uses RNA Output Sensors Activated by Ligand Induction (ROSALIND) to detect contaminants in water. A combination of highly processive RNA polymerases, allosteric protein transcription factors and synthetic DNA transcription templates regulates the synthesis of a fluorescence-activating RNA aptamer. The presence of a target contaminant induces the transcription of the aptamer, and a fluorescent signal is produced. We apply ROSALIND to detect a range of water contaminants, including antibiotics, small molecules and metals. We also show that adding RNA circuitry can invert responses, reduce crosstalk and improve sensitivity without protein engineering. The ROSALIND system can be freeze-dried for easy storage and distribution, and we apply it in the field to test municipal water supplies, demonstrating its potential use for monitoring water quality.


Asunto(s)
Técnicas Biosensibles/métodos , Contaminantes Químicos del Agua/análisis , Aptámeros de Nucleótidos/metabolismo , Fluorescencia , Liofilización , Genes Reporteros , Ligandos , Metales/metabolismo , ARN/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Factores de Transcripción/metabolismo , Transcripción Genética
10.
Artículo en Inglés | MEDLINE | ID: mdl-34267944

RESUMEN

Tracking progress towards Target 6.1 of the United Nations Sustainable Development Goals, "achieving universal and equitable access to safe and affordable drinking water for all", necessitates the development of simple, inexpensive tools to monitor water quality. The rapidly growing field of synthetic biology has the potential to address this need by taking DNA-encoded sensing elements from nature and reassembling them to create field-deployable 'biosensors' that can detect pathogenic or chemical water contaminants. Here we describe water quality monitoring strategies enabled by synthetic biology and compare them to previous approaches used to detect three priority water contaminants: fecal pathogens, arsenic, and fluoride in order to explain the potential for engineered biosensors to simplify and decentralize water quality monitoring. We also briefly discuss expanding biosensors to detect emerging contaminants including metals and pharmaceuticals. We conclude with an outlook on the future of biosensor development, in which we discuss adaptability to emerging contaminants, outline current limitations, and propose steps to overcome the field's outstanding challenges to facilitate global water quality monitoring.

11.
Adv Mater ; 31(43): e1901561, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31268207

RESUMEN

Biological materials found in Nature such as nacre and bone are well recognized as light-weight, strong, and tough structural materials. The remarkable toughness and damage tolerance of such biological materials are conferred through hierarchical assembly of their multiscale (i.e., atomic- to macroscale) architectures and components. Herein, the toughening mechanisms of different organisms at multilength scales are identified and summarized: macromolecular deformation, chemical bond breakage, and biomineral crystal imperfections at the atomic scale; biopolymer fibril reconfiguration/deformation and biomineral nanoparticle/nanoplatelet/nanorod translation, and crack reorientation at the nanoscale; crack deflection and twisting by characteristic features such as tubules and lamellae at the microscale; and structure and morphology optimization at the macroscale. In addition, the actual loading conditions of the natural organisms are different, leading to energy dissipation occurring at different time scales. These toughening mechanisms are further illustrated by comparing the experimental results with computational modeling. Modeling methods at different length and time scales are reviewed. Examples of biomimetic designs that realize the multiscale toughening mechanisms in engineering materials are introduced. Indeed, there is still plenty of room mimicking the strong and tough biological designs at the multilength and time scale in Nature.


Asunto(s)
Materiales Biomiméticos , Fenómenos Mecánicos , Animales , Materiales Biomiméticos/química , Biopolímeros/química , Humanos
12.
Exp Neurobiol ; 28(2): 183-215, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31138989

RESUMEN

In the brain, a reduction in extracellular osmolality causes water-influx and swelling, which subsequently triggers Cl-- and osmolytes-efflux via volume-regulated anion channel (VRAC). Although LRRC8 family has been recently proposed as the pore-forming VRAC which is activated by low cytoplasmic ionic strength but not by swelling, the molecular identity of the pore-forming swelling-dependent VRAC (VRACswell) remains unclear. Here we identify and characterize Tweety-homologs (TTYH1, TTYH2, TTYH3) as the major VRACswell in astrocytes. Gene-silencing of all Ttyh1/2/3 eliminated hypo-osmotic-solution-induced Cl- conductance (ICl,swell) in cultured and hippocampal astrocytes. When heterologously expressed in HEK293T or CHO-K1 cells, each TTYH isoform showed a significant ICl,swell with similar aquaporin-4 dependency, pharmacological properties and glutamate permeability as ICl,swell observed in native astrocytes. Mutagenesis-based structure-activity analysis revealed that positively charged arginine residue at 165 in TTYH1 and 164 in TTYH2 is critical for the formation of the channel-pore. Our results demonstrate that TTYH family confers the bona fide VRACswell in the brain.

13.
Trials ; 20(1): 216, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30987662

RESUMEN

BACKGROUND: Low back pain (LBP) is common, with a lifetime prevalence of 80%, and as such it places substantial social and economic burden on individuals and society. Chuna manual therapy (CMT) combines aspects of physiology, biodynamics of spine and joint motion, and basic theory of movement dynamics. This study aimed to test the comparative effectiveness and safety of CMT for non-acute LBP. METHODS: A three-arm, multicenter, pragmatic, randomized controlled pilot trial was conducted from 28 March 2016 to 19 September 2016, at four medical institutions. A total of 60 patients were randomly allocated to the CMT group (n = 20), usual care (UC) group (n = 20), or combined treatment (CMT + UC) group (n = 20), and received the relevant treatments for 6 weeks. The primary outcome was a numeric rating scale (NRS) representation of LBP intensity, while secondary outcomes included NRS of leg pain, Oswestry disability index (ODI), Patient Global Impression of Change (PGIC), the EuroQol-5 dimensions (EQ-5D), lumbar range of motion, and safety. RESULTS: A total of 60 patients were included in the intention-to-treat analysis and 55 patients (CMT, 18; UC, 18; CMT + UC, 19) were included in the per-protocol analysis (drop-out rate 5.3%). Over the treatment period there were significant differences in the NRS score for LBP (CMT mean - 3.28 (95% CI - 4.08, - 2.47); UC - 1.95 (- 2.82, - 1.08); CMT + UC - 1.75 (- 2.70, - 0.80), P < 0.01) and the ODI scores in each group (CMT - 12.29 (- 16.86, - 7.72); UC - 10.34 (- 14.63, - 6.06); CMT + UC - 9.27 (- 14.28, - 4.26), P < 0.01). The changes in other secondary outcomes did not significantly differ among the three groups. Sixteen minor-to-moderate safety concerns were reported. CONCLUSIONS: Our results suggest that CMT has comparative efficacy for non-acute LBP and is generally safe. As this was a preliminary study, a well-powered (over 192 participants) two-arm (CMT versus UC) verification trial will be performed to assess the generalizability of these results. TRIAL REGISTRATION: Clinical Research Information Service (CRIS), KCT0001850 . Registered on 12 March 2016.


Asunto(s)
Dolor de la Región Lumbar/terapia , Manipulaciones Musculoesqueléticas/métodos , Adulto , Investigación sobre la Eficacia Comparativa , Femenino , Humanos , Masculino , Persona de Mediana Edad , Manipulaciones Musculoesqueléticas/efectos adversos , Proyectos Piloto , Rango del Movimiento Articular
14.
ACS Biomater Sci Eng ; 5(5): 2122-2133, 2019 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-33405715

RESUMEN

As with most biological materials, natural bone has hierarchical structure. The microstructural features of compact bone are of various length scales with its porosity consisting of larger osteons (∼100 µm diameter) and vascular channels, as well as smaller lacuna spaces (∼10 µm diameter). In this study, the freeze-casting process, which has been previously used to form biocompatible porous scaffolds (made with hydroxyapatite, HA) has been improved to mimic the intrinsic hierarchical structure of natural bone by implementing an extrinsic 3D printed template. The results of pore characterization showed that this novel combined method of 3D printing and freeze-casting is able to produce porosity at multiple length scales. Nonporous, microporous (created with freeze-casting alone), and macro-micro porous (created with freeze-casting and 3D printed templating) scaffolds were compared as substrates to evaluate cellular activities using osteoblast-like MG63 cell lines. The number of cells oriented parallel to the HA wall structures in the freeze-cast scaffold was found to increase on the microporous and macro-micro porous samples when compare to the nonporous samples, mimicking the natural alignment of the lamella of natural bone. Regarding the cell morphologies, cells on microporous and macro-micro porous samples showed narrowly aligned shapes, whereas those on nonporous samples had polygonal shapes with no discernible orientation. Proliferation and differentiation tests demonstrated that no toxicity or functional abnormalities were found in any of the substrates due to potential chemical and mechanical residues that may have been introduced by the freeze-casting process. Monitoring of the three-dimensional distribution of cells in the scaffolds through microcomputed tomography indicates that the cells were well distributed in the interior pore spaces via the interpenetrating macro-micro pore networks. In summary, we demonstrate this novel approach can create porosity at multiple length scales and is highly favorable in creating a biocompatible, osteoconductive, and structurally hierarchical HA scaffolds for biomedical applications.

15.
J Ethnopharmacol ; 225: 198-201, 2018 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-30009978

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Dangguisusan (DGSS) is a widely used prescription for the treatment of traumatic injury in Korean medicine. AIM OF THE STUDY: To demonstrate the effects of DGSS on a mouse model of traumatic brain injury (TBI) for providing scientific evidence in clinical use. MATERIALS AND METHODS: TBI was induced in a mouse model using the controlled cortical impact method. Water extract of DGSS (50, 150, and 450 mg/kg) was administered twice a day for 8 d. Histological analyses were performed 8 d after TBI. Moreover, beam-walking, grip-strength, and novel object recognition (NOR) tests were conducted to evaluate the effects on motor function, muscle strength, and cognitive memory function, respectively. RESULT: DGSS inhibited body weight loss, hippocampal damage, and neuronal loss in the thalamic region. Furthermore, it reduced transverse time and foot faults in the beam-walking test at 3 d and increased the muscle strength in the grip-strength test at 3 and 8 d. It also improved the recognition index (%) in the NOR test. However, DGSS did not show protective effects against total damage. CONCLUSIONS: DGSS might improve sensory-motor and cognitive functions after TBI with partial protective effects against brain damage. The present findings provide a scientific basis for the clinical use of DGSS in TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Extractos Vegetales/uso terapéutico , Animales , Conducta Animal/efectos de los fármacos , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Masculino , Ratones Endogámicos ICR , Neuronas/efectos de los fármacos
16.
J Mech Behav Biomed Mater ; 84: 273-280, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29852315

RESUMEN

Woodpeckers peck at trees without any reported brain injury despite undergoing high impact loads. Amongst the adaptations allowing this is a highly functionalized impact-absorption system consisting of the head, beak, tongue and hyoid bone. This study aims to examine the anatomical structure, composition, and mechanical properties of the skull to determine its potential role in energy absorption and dissipation. An acorn woodpecker and a domestic chicken are compared through micro-computed tomography to analyze and compare two- and three-dimensional bone morphometry. Optical and scanning electron microscopy with energy dispersive X-ray spectroscopy are used to identify the structural and chemical components. Nanoindentation reveals mechanical properties along the transverse cross-section, normal to the direction of impact. Results show two different strategies: the skull bone of the woodpecker shows a relatively small but uniform level of closed porosity, a higher degree of mineralization, and a higher cortical to skull bone ratio. Conversely, the chicken skull bone shows a wide range of both open and closed porosity (volume fraction), a lower degree of mineralization, and a lower cortical to skull bone ratio. This structural difference affects the mechanical properties: the skull bones of woodpeckers are slightly stiffer than those of chickens. Furthermore, the Young's modulus of the woodpecker frontal bone is significantly higher than that of the parietal bone. These new findings may be useful to potential engineered design applications, as well as future work to understand how woodpeckers avoid brain injury.


Asunto(s)
Pollos , Fenómenos Mecánicos , Cráneo , Animales , Fenómenos Biomecánicos , Ensayo de Materiales , Nanotecnología , Cráneo/química , Cráneo/diagnóstico por imagen , Microtomografía por Rayos X
17.
J Nanosci Nanotechnol ; 18(2): 1323-1326, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29448583

RESUMEN

In the present work, a facile method for the preparation of nanocomposite adsorbents composed of carbon and iron compounds was demonstrated. The adsorbents were produced by pyrolyzing an iron-coordinated 1,8-diaminonaphthalene at various temperatures under an N2 stream (FeDN X, where X represents the pyrolysis temperatures 600, 700, and 800 °C). Prepared FeDNs were employed as adsorbents for the removal of Cr (VI). The Cr (VI)-adsorption behavior of FeDNs were well-fitted to a Langmuir isotherm model. Among the samples prepared, FeDN 700 showed the best performance for the removal of Cr (VI). In particular, the maximum adsorption capacity of FeDN 700 was evaluated to be 34.81 mg/g. A variety of characterizations were carried out to elucidate the relationship between physical properties of adsorbents and their adsorption behaviors.

18.
Acta Biomater ; 64: 1-14, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28974475

RESUMEN

Bighorn sheep (Ovis canadensis) rams hurl themselves at each other at speeds of ∼9 m/s (20 mph) to fight for dominance and mating rights. This necessitates impact resistance and energy absorption mechanisms, which stem from material-structure components in horns. In this study, the material hierarchical structure as well as correlations between the structure and mechanical properties are investigated. The major microstructural elements of horns are found as tubules and cell lamellae, which are oriented with (∼30°) angle with respect to each other. The cell lamellae contain keratin cells, in the shape of pancakes, possessing an average thickness of ∼2 µm and diameter of ∼20-30 µm. The morphology of keratin cells reveals the presence of keratin fibers and intermediate filaments with diameter of ∼200 nm and ∼12 nm, respectively, parallel to the cell surface. Quasi-static and high strain rate impact experiments, in different loading directions and hydration states, revealed a strong strain rate dependency for both dried and hydrated conditions. A strong anisotropy behavior was observed under impact for the dried state. The results show that the radial direction is the most preferable impact orientation because of its superior energy absorption. Detailed failure mechanisms under the aforementioned conditions are examined by bar impact recovery experiments. Shear banding, buckling of cell lamellae, and delamination in longitudinal and transverse direction were identified as the cause for strain softening under high strain rate impact. While collapse of tubules occurs in both quasi-static and impact tests, in radial and transverse directions, the former leads to more energy absorption and impact resistance. STATEMENT OF SIGNIFICANCE: Bighorn sheep (Ovis canadensis) horns show remarkable impact resistance and energy absorption when undergoing high speed impact during the intraspecific fights. The present work illustrates the hierarchical structure of bighorn sheep horn at different length scales and investigates the energy dissipation mechanisms under different strain rates, loading orientations and hydration states. These results demonstrate how horn dissipates large amounts of energy, thus provide a new path to fabricate energy absorbent and crashworthiness engineering materials.


Asunto(s)
Fuerza Compresiva , Cuernos/química , Queratinas/química , Estrés Mecánico , Animales , Anisotropía , Cuernos/anatomía & histología , Ovinos
19.
IUCrJ ; 4(Pt 4): 486-494, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28875035

RESUMEN

A deep machine-learning technique based on a convolutional neural network (CNN) is introduced. It has been used for the classification of powder X-ray diffraction (XRD) patterns in terms of crystal system, extinction group and space group. About 150 000 powder XRD patterns were collected and used as input for the CNN with no handcrafted engineering involved, and thereby an appropriate CNN architecture was obtained that allowed determination of the crystal system, extinction group and space group. In sharp contrast with the traditional use of powder XRD pattern analysis, the CNN never treats powder XRD patterns as a deconvoluted and discrete peak position or as intensity data, but instead the XRD patterns are regarded as nothing but a pattern similar to a picture. The CNN interprets features that humans cannot recognize in a powder XRD pattern. As a result, accuracy levels of 81.14, 83.83 and 94.99% were achieved for the space-group, extinction-group and crystal-system classifications, respectively. The well trained CNN was then used for symmetry identification of unknown novel inorganic compounds.

20.
Oncotarget ; 8(36): 60299-60311, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28947972

RESUMEN

Malignant cells are subjected to high levels of oxidative stress that arise from the increased production of reactive oxygen species (ROS) due to their altered metabolism. They activate antioxidant mechanisms to relieve the oxidative stress, and thereby acquire resistance to chemotherapeutic agents. In the present study, we found that PGC1α, a key molecule that both increases mitochondrial biogenesis and activates antioxidant enzymes, enhances chemoresistance in response to ROS generated by exposure of cells to ovarian sphere-forming culture conditions. Cells in the cultured spheres exhibited stem cell-like characteristics, and maintained higher ROS levels than their parent cells. Intriguingly, scavenging ROS diminished the aldehyde dehydrogenase (ALDH)-positive cell population, and inhibited proliferation of the spheres. ROS production triggered PGC1α expression, which in turn caused changes to mitochondrial biogenesis and activity within the spheres. The drug-resistant phenotype was observed in both spheres and PGC1α-overexpressing parent cells, and conversely, PGC1α knockdown sensitized the spheres to cisplatin treatment. Similarly, floating malignant cells derived from patient ascitic fluid included an ALDH-positive population and exhibited the tendency of a positive correlation between expressions of multidrug resistance protein 1 (MDR1) and PGC1α. The present study suggests that ROS-induced PGC1α mediates chemoresistance, and represents a novel therapeutic target to overcome chemoresistance in ovarian cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...